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Background

EU directives

for water, air and soil quality suggest today the usage of modelling
techniques for sustainable environmental or risk and disaster
management.

Modelling tools, such as meta-models or model chains are being
developed to

I study physical, economical and social processes,

I provide decision support to stakeholders

in an integrated and optimal way.

FOSS4G, Barcelona – September 8, 2010 3



Background

EU directives

for water, air and soil quality suggest today the usage of modelling
techniques for sustainable environmental or risk and disaster
management.

Modelling tools, such as meta-models or model chains are being
developed to

I study physical, economical and social processes,

I provide decision support to stakeholders

in an integrated and optimal way.

FOSS4G, Barcelona – September 8, 2010 3



Background

EU directives

for water, air and soil quality suggest today the usage of modelling
techniques for sustainable environmental or risk and disaster
management.

Modelling tools, such as meta-models or model chains are being
developed to

I study physical, economical and social processes,

I provide decision support to stakeholders

in an integrated and optimal way.

FOSS4G, Barcelona – September 8, 2010 3



Background

EU directives

for water, air and soil quality suggest today the usage of modelling
techniques for sustainable environmental or risk and disaster
management.

Modelling tools, such as meta-models or model chains are being
developed to

I study physical, economical and social processes,

I provide decision support to stakeholders

in an integrated and optimal way.

FOSS4G, Barcelona – September 8, 2010 3



Background

EU directives

for water, air and soil quality suggest today the usage of modelling
techniques for sustainable environmental or risk and disaster
management.

Modelling tools, such as meta-models or model chains are being
developed to

I study physical, economical and social processes,

I provide decision support to stakeholders

in an integrated and optimal way.

FOSS4G, Barcelona – September 8, 2010 3



What about model uncertainties?

Definition

EU directive for air quality allows 50% uncertainty or smaller of
model outputs.

Uncertainties associated to model outputs have to be

I assessed,

I accounted for

in the modelling and decision process.
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Why Spatial Uncertainty?

Definition

Much attention has been given to temporal and parameter
uncertainties, little attention to spatial uncertainties of
geospatial data and model results.
Even less attention has been paid to accounting for and
exchanging uncertainties in modelling, visualisation and decision
making.
Until now no OGC standard exists to easily store and exchange
uncertainties of geospatial data.

FOSS4G, Barcelona – September 8, 2010 5



Why Spatial Uncertainty?

Definition

Much attention has been given to temporal and parameter
uncertainties, little attention to spatial uncertainties of
geospatial data and model results.
Even less attention has been paid to accounting for and
exchanging uncertainties in modelling, visualisation and decision
making.
Until now no OGC standard exists to easily store and exchange
uncertainties of geospatial data.

FOSS4G, Barcelona – September 8, 2010 5



Why Spatial Uncertainty?

Definition

Much attention has been given to temporal and parameter
uncertainties, little attention to spatial uncertainties of
geospatial data and model results.
Even less attention has been paid to accounting for and
exchanging uncertainties in modelling, visualisation and decision
making.
Until now no OGC standard exists to easily store and exchange
uncertainties of geospatial data.

FOSS4G, Barcelona – September 8, 2010 5



Sources of Uncertainties

Table 1: Overview of uncertainties encountered in the modelling
process.

Context uncertainty Boundaries of the system, e.g. environmental,
social circumstances.

Input uncertainty Input data uncertainties, e.g. non-uniform
landscape, limitations in land-use
identification, meteorological variability

Structural and technical Conceptual errors due to incomplete
uncertainty understanding or simplifications, e.g.

approximation in pollutant transport,
resolution in space and time.

Parameter uncertainty Errors related to parameter estimation,
e.g. empirical constants.
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Setting a specific problem

Definition

Integrated environmental assessment model chains often require
spatial disaggregation and/or aggregation of input and output
data.

Objective

Model spatial uncertainties associated to emission disaggregation
(downscaling) in the Luxembourg Energy Air Quality assessment
model to provide error information for decision making.

Approach

Decompose the emission value into its mean and standard
deviation and use stochastic simulation to compute a spatially
correlated error.
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Luxembourg Energy-Air Quality model

A FOSS approach

The LEAQ model consists of the GEOspatial Emission Calculator
(GEOECU) and the AsYmptotic Level Transport and Pollution
(AYLTP) model coupled by an optimization routine (OBOE).

I GEOECU computes emissions and minimises energy costs for
5 sectors. GLPK

I AYLTP computes transport of air pollutants. C++, R spatial

I OBOE determines an optimal solution for lowest energy costs
with air quality constraints. COIN

I LEAQ utilities consist of geospatial tools. R spatial, GRASS

I Geospatial database stores inputs, intermediate results and
outputs. PostGIS
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Luxembourg Energy-Air Quality model
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The LEAQ model in chain mode

Energy model

Emission allocation

Air quality

AOT calculation

Energy demand/supply (aggregation)

Sectoral emissions

Emission grid (disaggregation)

Ozone concentrations

Average over threshold (aggregation)
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Steps in emission allocation

1. Compute global emission values per sector.

2. Distribute global mean emission values across sector grid.

3. Compute global standard deviation per sector and allocate to
sector grid.

4. Build spatial variogram model based on expert knowledge.

5. Generate 100 realisations for local error using unconditional
sequential Gaussian block simulation with Latin Hypercube
Sampling based on assumed mean and variogram.

6. Compute local standard deviation from local error and global
standard deviation.

7. Compute local emissions from global mean and local standard
deviation.

8. Compute statistics, i.e. mean, standard deviation, confidence
intervals.
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Spatial disaggregation

For each grid cell and sector we decompose the emission value into
its mean, standard deviation and spatial error

e(xi ) = µes + σes × εe(xi )

σes = αs × µes α ∈ [0, 1]

εe(xi ) = µε + ηε(xi ) with γη
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Estimated global variation coefficient α

The following variation coefficients were chosen for α.

Sector α

Residential 0.6
Industrial 0.5
Agriculture 0.1
Forest 0.1
Motorways 0.1
National roads 0.3
Municipal roads 0.5
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Geostatistical model for spatial error

Definition

For εe we assume stationarity with known µε = 0 and known
variogram

γη(h) = E [(Z (x)− Z (y))2]

The variogram model consists of an exponential structure

γ(h) = (s − n)(1− exp(−h/(ra))) + n1(0,∞)(h)

and two spherical structures

γ(h) = (s − n)

((
3h

2r
− h3

2r3

)
1(0,r)(h) + 1(r ,∞)(h)

)
+ n1(0,∞)(h)

with n being the nugget, s the sill and r the range.
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The Semivariogram

Semivariogram:

I Nugget = intercept

I Sill = total variance

I Range = Lag
distance where sill
is reached

I Shape = Spherical,
Exponential,
Gaussian, ...
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Application in interpolation (Kriging)

Sampling locations and
interpolation

Semivariogram and model
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Variogram parameters chosen

Definition

The final variogram model has the following components and
parameters:

γε(h) = γε1 + γε2 + γε3

γε1 := {n = 0.1, s1 = 0.3, r1 = 100,m = Exp}
γε2 := {s2 = 0.3, r2 = 1000,m = Sph}
γε3 := {s3 = 0.2, r3 = 5000,m = Sph}

The above model was used in 100 unconditional sequential
Gaussian simulation runs using Latin Hypercube Sampling
with µε = 0.
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Sequential Gaussian simulation

Definition

Sequential Gaussian simulation samples randomly a value from a
normal Gaussian distribution with a known mean µ and a known
semivariogram model γ. Each simulation iteration is called a
realisation. After n realisations we can compute summary statistics
at each point in space, i.e. mean, standard deviation, median, . . . .
The mean of n realisations equals the kriged mean value.
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Allocated initial CO2 emissions [kt/y]

Sector map Mean CO2 emissions
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Simulated spatial Gaussian error ε

Realisation 1
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Realisation 5
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Disaggregated total emissions [kt/y]

Local emissions realisation 1

0.000
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Local emissions realisation 5
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Disaggregated total emissions (zoom)

Local emissions realisation 1 Local emissions realisation 5
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Difference realisations 1 and 5 [kt/y]
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Discussion

I The presented methodology seems to work.

I We can now compute various statistics and use them in the
model chain, e.g. for error propagation, robust optimisation or
decision making.

I Assumptions made need to be verified, i.e. α, semivariogram
model γ, Gaussian distribution of error.

I Validation with emission observations, experts and further
analysis of land use/sector patterns would help here.

I Furthermore, we might want to include population as a trend
to catch better variation at dense populated areas and
industry.

But how to make use of uncertainty information in modelling or
decision making?
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Discussion continued ...

I Geospatial models get more complex and implemented in
complex spatial software and data infrastructures.

I In the scientific field we can account for uncertainties, but we
need to make it more accessible for the non-expert users, i.e.
administrations using web processing services.

I UncertML has been proposed as an uncertainty standard
(www.uncertml.org).

I What we need now is to implement an uncertainty standard to
provide storage, exchange and visualisation of uncertainties
via web based services as geospatial information gets more
and more complex.

I There is a first serious attempt to make UncertML accessible
via web based integration UncertWeb (www.uncertweb.org).
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Conclusions

I We have to account for uncertainties
I to understand results from complex geospatial modelling

infrastructures,
I to support and improve decision making.

I We need to make uncertainties accessible and understandable
for the non-expert users, such as policy makers, decision
makers.

I Uncertainties need to be integrated in an exchangeable way
into web based processing services for exchange in cascading
model chains to account for uncertainties.

I First prototypes of uncertainty engines could be developed in
R and interfaced via a web processing service.
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Thank you for your attention!

Contact: Ulrich.Leopold@Tudor.lu
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Appendix

Appendix
Additional material LEAQ
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Optimization Framework

Energy model

Emission allocation

Air quality

AOT calculation

Oracle-Based
Optimization
Engine

Sectoral emissions

Emission grid

Ozone concentrations

ē

γ(ē); dγ(ē)
dē

ē

AOT (ē)
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dē
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ē
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