

pgRouting extension for courses calculation in a VTMS

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

VTMS overview

- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

VTMS

(Vessel Traffic Management System)

VTMS Services

Safe and laws enforcement

- Ships and ports safety monitoring
- Police actions support
- Fishing activities control
- Dangerous loads monitoring

Decision support to human life safeguard at sea

- Accidents prevention
- Environment protection
- Search and Rescue (SAR) support
- Emergency missions planning and monitoring

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

Emergency Missions

Anti-pollution

SAR

Mission Planning

Mission Execution

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

Open sea scenery

Open sea scenery is characterized by islands, peninsulas, buoys and many other obstacles that can be modeled as POLYGONS

Open sea scenery can be reasonably modeled with a "Visibility Graph" where two objects are reachable one

In this kind of scenery two objects cannot be connected by a single straight line if it intersects obstacles

A **shortest path** is like a **course** in open sea

each other by a **shortest path**

Visibility Graph Algorithm Input/Output

Input: A set of Polygons: P1,..,Pn

Output: A weighted graph G= (V,E)

Visibility Graph building Algorithm

 Given V(G) = set of all input polygons vertexes

Taken E(G) = set of visibility graph edges

For each u in V(G), v in V(G)An edge e=(u,v) is added to E(G)if and only if e doesn't intersect any of polygons P_i (i=1,..n)

Shortest Path in a Visibility Graph 1/2

Step 1:

Insertion of two input points **p1** and **p2** into the visibility graph

Shortest Path in a Visibility Graph 2/2

Step 2:

Shortest Path calculation between **p1** and **p2** by a routing algorithm as Dijkstra

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

Use of GIS

The need to analyze, elaborate and store geographic information and geometric data suggested to use **Geographic Information System**

PostgreSQL+Postgis

- PostgreSQL has been selected as object-relational DBMS
- PostgreSQL is supported from PostGIS for geographic data management
- PostGIS defines data types that allow to store spatial information as records of a database table

PostGIS provides to DBMS functions to manage spatial data

Shortest Path by GIS-based DB

SHORTEST PATH

- •pgRouting is a C library that provides <u>routing</u> functionality to PostGIS/PostgreSQL
- pgRouting already implements algorithms like the following:
 - Shortest Path Dijkstra, shortest path algorithm with exact result
 - Shortest Path A*, shortest path algorithm with heuristics
 - Traveling Sales Person (TSP)

Extended pgRouting for Visibility Graph

VISIBILITY GRAPH BUILDING

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

Extended pgRouting

- 1. Visibility graph building starting from POLYGON type objects
- 2. New points insertion into a previously built visibility graph
- 3. Shortest path calculation by Dijkstra algorithm between two points into a visibility graph

1.build_visibility_graph

1.build_visibility_graph function

FUNCTION build_visibility_graph(tablename varchar)

Parameter:

 Name of DB table containing POLYGON type objects Constraint: <u>Polygons have to be closed.</u>

Description:

- Build a visibility graph by inserting a visibility edge between each couple of input polygons points
- Assign an index to each node of built visibility graph
- Calculate length of each inserted edge

2. insert_point_into_graph

SELECT insert_point_into_graph('polygons', 'label', point_x,point_y);

2. insert_point_into_graph function

Datum insert_point_into_graph(tablename varchar, label varchar, p_x float8, p_y float8)

Parameters:

- a. <u>name</u> of table containing POLYGONS for which visibility graph has been built
- b. label to identify edges to be included for input point p
- c. \underline{x} and \underline{y} coordinates of input point \underline{p}

Description:

- Build visibility edges for input point p, of coordinates (x,y), in the visibility graph built from polygons table
- Assign a label to identify new included edges for point p
- Assign a new index to input point p in the visibility graph

3. shortest_path_into_ visibilitygraph

SELECT shortest_path_into_visibilitygraph('polygons', p1_x, p1_y, p2_x, p2_y, 'label');

3. shortest_path_into_visibilitygraph function

FUNCTION shortest_path_into_visibilitygraph(tablename varchar, p1_x float8, p1_y float8, p2_x float8, p2_y float8, label varchar)

Parameters:

- a. name of POLYGONS table for which visibility graph has been built
- b. label to identify edges to be included for input points
- c. x and y coordinates of input points p1, p2

Description:

- insert two points in the visibility graph, built from polygons table, by calling insert point into graph function with 'label' as argument
- calculate shortest path between p1 and p2 by pgRouting Dijkstra SP function

Current pgRouting deploy

Extended pgRouting deploy

Extended pgRouting: cmake

FindPostgis.cmake

```
if(POSTGIS INCLUDE DIR AND POSTGIS LIBRARIES)
 set(POSTGIS FOUND TRUE)
else(POSTGIS INCLUDE DIR AND POSTGIS LIBRARIES)
FIND PATH(POSTGIS INCLUDE DIR postgis config.h
   /usr/local/pgsql/include/server
   /usr/local/include/pgsgl/server
   ${PGROUTING CORE INCLUDE DIR}
   $ENV{ProgramFiles}/PostgreSQL/*/include/server
   $ENV{SystemDrive}/PostgreSQL/*/include/server
 FIND PATH(POSTGIS INCLUDE DIR liblwgeom.h
   $POSTGIS_HOME/liblwgeom
 find library(POSTGIS LIBRARIES NAMES libpostgis
postgis
  PATHS
  /usr/lib
  $ENV{ProgramFiles}/PostgreSQL/*/lib/ms
  $ENV{SystemDrive}/PostgreSQL/*/lib/ms
```

```
if(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
set(POSTGIS_FOUND TRUE)
message(STATUS "Found Postgis: $
{POSTGIS_INCLUDE_DIR}, ${POSTGIS_LIBRARIES}")
INCLUDE_DIRECTORIES(${POSTGIS_INCLUDE_DIR})
else(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
set(POSTGIS_FOUND FALSE)
message(STATUS "Postgis not found.")
endif(POSTGIS_INCLUDE_DIR AND
POSTGIS_LIBRARIES)

mark_as_advanced(POSTGIS_INCLUDE_DIR
POSTGIS_LIBRARIES)
endif(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
```


Extended pgRouting: extra/visibility_graph

librouting_vg.so

src

- build_visibility_graph.c
- insert_point_into_graph.c

C language

Datum

build_visibilitygraph(PG_FUNCTION_ARGS)

Datum

insert_point_into_graph(PG_FUNCTION_ARGS)

sql

- routing_vg.sql
- routing_vg_util.sql

plpgsql language

•FUNCTION

build_visibility_graph(tablename varchar)

FUNCTION

shortest_path_into_visibilitygraph(...)

- VTMS overview
- Decision Support in a VTMS
- Visibility Graph to model Open Sea
- Geospatial DB and GIS functions to solve SP
- Extended pgRouting for Visibility Graph
- Conclusions

Conclusions

UP:

- Optimized DBMS GIS libraries can be exploited to easily represent and manage geographic objects
- The complexity of calculations is totally demanded to the DBMS set of functions

DOWN:

- Extended pgRouting approach turned out to be not effective for near real time application involving lots of multi sensor tracks e.g. In a scenery with more than 2000 tracks, the insertion of one node into a previously built visibility graph, on a PowerPC needs about 4 seconds. Moreover, time to calculate shortest path between two points is about 7,5 seconds
- Extended pgRouting is work in progress again and has been used only internally as object of study

Thank you!

Contacts:

Angela Pappagallo - angela.pappagallo@intecs.it

Domenico Balestrieri - domenico.balestrieri@intecs.it

Massimo Costantini - massimo.costantini@intecs.it

Roberto De Felici - rdefelici@selex-si.com (VTMS System)

Visit our web-sites

http://www.intecs.it

http://www.selex-si.com