
1INTECS S.p.A. (www.intecs.it)

pgRouting extension for coursespgRouting extension for courses
calculation in a VTMScalculation in a VTMS

AGENDA

2

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

AGENDA

3

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

4

VTMS
(Vessel Traffic Management System)

5

VTMS Services

• Accidents prevention
• Environment protection
• Search and Rescue (SAR) support
• Emergency missions planning and

monitoring

Decision support to human life
safeguard at sea

Safe and laws enforcement

• Ships and ports safety monitoring
• Police actions support
• Fishing activities control
• Dangerous loads monitoring

AGENDA

6

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

7

Emergency Missions

SAR

Hunting

Anti-pollution

8

Mission Planning

9

Mission Execution

AGENDA

10

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

11

Open sea scenery

Open sea scenery is
characterized by islands,
peninsulas, buoys and many
other obstacles that can be
modeled as POLYGONS

In this kind of scenery two
objects cannot be connected by
a single straight line if it
intersects obstacles

Open sea scenery can be
reasonably modeled with a
“Visibility Graph” where two
objects are reachable one
each other by a shortest path

A shortest path is like a
course in open sea

12

Visibility Graph
Algorithm Input/Output

Input: A set of Polygons: P1,..,Pn

Output: A weighted graph G= (V,E)

8 9

1011

1 2

34

5

6

7

13

Visibility Graph building
Algorithm

• Given V(G) = set of all input
polygons vertexes
• Taken E(G) = set of visibility graph
edges

For each u in V(G), v in V(G)
An edge e=(u,v) is added to E(G)
if and only if e doesn’t intersect
any of polygons Pi (i=1,..n)

8 9

1011

1 2

34

5

6

7

14

Shortest Path in a
Visibility Graph 1/2

Step 1:
Insertion of two input
points p1 and p2 into
the visibility graph

8 9

1011

1 2

34

5

6

7

p1

p2

15

Shortest Path in a
Visibility Graph 2/2

Step 2:
Shortest Path
calculation between
p1 and p2 by a
routing algorithm as
Dijkstra

8 9

1011

1 2

34

5

6

7

p1

p2

AGENDA

16

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

17

Use of GIS

The need to analyze, elaborate and store geographic
information and geometric data suggested to use
Geographic Information System

18

PostgreSQL+Postgis

• PostgreSQL has been selected as object-relational DBMS

• PostgreSQL is supported from PostGIS for geographic
data management

• PostGIS defines data types that allow to store spatial
information as records of a database table

• PostGIS provides to DBMS functions to manage spatial
data

19

Shortest Path
by GIS-based DB

•pgRouting is a C library that provides routing functionality to
PostGIS/PostgreSQL

• pgRouting already implements algorithms like the following:
 - Shortest Path Dijkstra, shortest path algorithm with exact result
 - Shortest Path A*, shortest path algorithm with heuristics
 - Traveling Sales Person (TSP)

20

Extended pgRouting for
Visibility Graph

AGENDA

21

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

22

Extended pgRouting

1. Visibility graph building starting from
POLYGON type objects

2. New points insertion into a previously built
visibility graph

3. Shortest path calculation by Dijkstra
algorithm between two points into a visibility
graph

23

1.build_visibility_graph

SELECT build_visibility_graph('polygons')

24

1.build_visibility_graph
function

FUNCTION build_visibility_graph(tablename varchar)

Parameter:

• Name of DB table containing POLYGON type objects
 Constraint: Polygons have to be closed.

Description:

• Build a visibility graph by inserting a visibility edge between each
couple of input polygons points

• Assign an index to each node of built visibility graph
• Calculate length of each inserted edge

25

2. insert_point_into_graph

SELECT insert_point_into_graph('polygons', ‘label’, point_x,point_y);

p2

p1

26

2. insert_point_into_graph
function

Datum insert_point_into_graph(tablename varchar,
 label varchar,
 p_x float8,
 p_y float8)

Parameters:
a. name of table containing POLYGONS for which visibility graph has

been built
b. label to identify edges to be included for input point p
c. x and y coordinates of input point p

Description:
• Build visibility edges for input point p, of coordinates (x,y), in the visibility

graph built from polygons table
• Assign a label to identify new included edges for point p
• Assign a new index to input point p in the visibility graph

p (x,y)

27

3. shortest_path_into_
visibilitygraph

SELECT shortest_path_into_visibilitygraph('polygons', p1_x, p1_y,
p2_x, p2_y, 'label');

p2

p1

28

3. shortest_path_into_
visibilitygraph function

FUNCTION shortest_path_into_visibilitygraph(tablename varchar,
p1_x float8, p1_y float8, p2_x float8, p2_y float8, label varchar)

Parameters:
a. name of POLYGONS table for which visibility graph has been built
b. label to identify edges to be included for input points
c. x and y coordinates of input points p1, p2

Description:

• insert two points in the visibility graph, built from polygons table, by calling
insert_point_into_graph function with ‘label’ as argument

• calculate shortest path between p1 and p2 by pgRouting Dijkstra SP function

p1(x,y)

p2(x,y)

29

Current pgRouting
deploy

core

libextra

cmake

pgRoutingpgRouting
• src
• sql

librouting.so

•FindPostgreSQL.
 cmake
•FindGAUL.cmake
•FindCGAL.cmake
•…

•driving_distance
•tsp

30

Extended pgRouting
deploy

core

libextra

cmake

Extended-pgRoutingExtended-pgRouting
• src
• sql

- librouting.so
- librouting_vg.so

•FindPostgreSQL.
 cmake
•…
•FindPostgis.
 cmake

•driving_distance
•tsp
•visibility_graph

31

Extended pgRouting:
cmake

FindPostgis.cmake

if(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
 set(POSTGIS_FOUND TRUE)

else(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)

 FIND_PATH(POSTGIS_INCLUDE_DIR postgis_config.h
 /usr/local/pgsql/include/server
 /usr/local/include/pgsql/server
 ${PGROUTING_CORE_INCLUDE_DIR}
 $ENV{ProgramFiles}/PostgreSQL/*/include/server
 $ENV{SystemDrive}/PostgreSQL/*/include/server
)

 FIND_PATH(POSTGIS_INCLUDE_DIR liblwgeom.h
 $POSTGIS_HOME/liblwgeom
)

 find_library(POSTGIS_LIBRARIES NAMES libpostgis
postgis
 PATHS
 /usr/lib
 ….
 $ENV{ProgramFiles}/PostgreSQL/*/lib/ms
 $ENV{SystemDrive}/PostgreSQL/*/lib/ms
)

 if(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
 set(POSTGIS_FOUND TRUE)
 message(STATUS "Found Postgis: $
{POSTGIS_INCLUDE_DIR}, ${POSTGIS_LIBRARIES}")
 INCLUDE_DIRECTORIES(${POSTGIS_INCLUDE_DIR})
 else(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)
 set(POSTGIS_FOUND FALSE)
 message(STATUS "Postgis not found.")
 endif(POSTGIS_INCLUDE_DIR AND
POSTGIS_LIBRARIES)

 mark_as_advanced(POSTGIS_INCLUDE_DIR
POSTGIS_LIBRARIES)

endif(POSTGIS_INCLUDE_DIR AND POSTGIS_LIBRARIES)

32

Extended pgRouting:
extra/visibility_graph

src

- build_visibility_graph.c
- insert_point_into_graph.c

C language

sql

- routing_vg.sql
- routing_vg_util.sql

sql

- routing_vg.sql
- routing_vg_util.sql

plpgsql
language

•FUNCTION

 build_visibility_graph(tablename varchar)

•FUNCTION

 shortest_path_into_visibilitygraph(…)

•Datum

 build_visibilitygraph(PG_FUNCTION_ARGS)

•Datum

 insert_point_into_graph(PG_FUNCTION_ARGS)

librouting_vg.so

AGENDA

33

• VTMS overview

• Decision Support in a VTMS

• Visibility Graph to model Open Sea

• Geospatial DB and GIS functions to solve SP

• Extended pgRouting for Visibility Graph

• Conclusions

34

Conclusions

UP:
• Optimized DBMS GIS libraries can be exploited to easily represent and
manage geographic objects

• The complexity of calculations is totally demanded to the DBMS set of
functions

DOWN:
• Extended pgRouting approach turned out to be not effective for near real
time application involving lots of multi sensor tracks
e.g. In a scenery with more than 2000 tracks, the insertion of one node into a
previously built visibility graph, on a PowerPC needs about 4 seconds. Moreover,
time to calculate shortest path between two points is about 7,5 seconds

• Extended pgRouting is work in progress again and has been used only
internally as object of study

35

Thank you!

Contacts:

Angela Pappagallo - angela.pappagallo@intecs.it

Domenico Balestrieri - domenico.balestrieri@intecs.it

Massimo Costantini - massimo.costantini@intecs.it

Roberto De Felici - rdefelici@selex-si.com (VTMS System)

Visit our web-sites

 http://www.intecs.it

 http://www.selex-si.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

