

THE POWERFUL WPS PLATFORM

Mr. Gérald FENOY, GeoLabs Dr. Nicolas BOZON, 3LIZ Pr. Venkatesh RAGHAVAN, OCU

PRESENTATION OUTLINE

Goals of the ZOO Project (WPS & FOSS4G)

Status of the ZOO Community (Tribe and PSC)

Status of the ZOO Project (Version 1.0)

ZOO Project Experiments

WHAT IS WPS?

Web Processing Service is designed to standardize the way that GIS algorithms are made available on the Internet.

WPS specifies a mean for a client to request the execution of a spatial calculation from a service.

WPS intends to automate geoprocessing by employing geospatial semantics in a service-oriented architecture (SOA).

Open Geospatial Consortium interoperability standards since 2005

WHY USING WPS?

Web Processing Service allows to deploy and to orchestrate advanced GIS processes on the server-side.

WPS can connect to cartographic engine and spatial databases and thus drive complex spatial data infrastructures (SDI).

WPS is a generic and standardized way to use GIS on the Internet.

WPS can run FOSS4G and OSGeo tools!

WHAT IS ZOO?

ZOO is a **WPS** (**Web Processing Service**) compliant server-side platform based on OGC's WPS 1.0.0

ZOO is open source software released under MIT/X-11 licence

ZOO is designed to create and chain web processing services easily, using **FOSS4G libs or existing code**.

ZOO is based on a C Kernel (**ZOO Kernel**) able to load dynamic libraries and to orchestrate Webservices coded in several programming languages.

ZOO PROJECT GOALS

Make FOSS4G libs communicate in a standardized way using WPS

Make GIS-based Web Services deployment and chaining easier and faster

Create a ready-to-use **Webservices suite** based on stable libs

Enable advanced Web GIS functionalities such as:

- Conversion, reprojection and processing of data
- Advanced GIS algorithms
- External spatial-based scientific models

ZOO PROJECT COMMUNITY

ZOO Tribe:

ZOO Tribe
ZOO Tribal Council
Developers and users
Project Steering committee

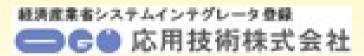
ZOO Social media:

http://www.zoo-project.org

#zoo_project@irc.freenode.net

zoo-discuss@gisws.media.osaka-cu.ac.jp

http://www.twitter.com/ZOO_Project


http://www.linkedin.com/groups?home=&gid=2532284

Welcome the ZOO Tribe

ZOO Tribal Council

- Nicolas BOZON (3LIZ), FR
- Maria Antonia Brovelli (Politecnico di Milano), IT
- Massimiliano CANNATA (SUPSI), CH
- Gerald FENOY (GeoLabs), FR (Chair)
- Hirofumi HAYASHI (AppTech), JP
- Daniel KASTL (Georepublic), DE
- Jeff McKENNA (Gateway Geomatics), CA
- Markus NETELER (Fondazione Edmund Mach), IT
- Venkatesh RAGHAVAN (Osaka City University), JP
- Satoshi SEKIGUCHI (AIST GEO Grid), JP

HOW DOES ZOO WORK? (1)

ZOO Kernel handles and chains ZOO Services

A **ZOO service** is composed of:

A metadata file .zcfg (Title, Metadata, Inputs, Output...)

A Service Provider: « Service Shared Object » (SSO) (Dynamic library, Python modules, JAVA Class, PHP script ...)

www.zoo-project.org

WPS **GetCapabilities** et **DescribeProcess** requests are solved by parsing .zcfg file using Flex and Bison

ZOO Kernel is able to load SSO dynamically, to extract specific functions and to execute them, answering the **WPS Execute** requests

HOW DOES ZOO WORK? (2)

Execute request parsing (XML / KVP) to fill internal data structure

- Xlink:href checking , conditional data download to provide input data value
- **Dynamic loading** of the Service Provider Shared Objects
- **Specific service function call**, passing internal data structure by reference
- ResponseDocument / Raw data output, using the previous data structure (modified by the service itself)

SUPPORTED LANGUAGES

ZOO Kernel supports several programming languages

- C / C++ Native support

- Python Native support (Python interpreter)

- Fortran Optionnal support (F77, F90)

- PHP Optionnal support (PHP embedded)

- Java Optionnal support (Java SDK)

- Javascript Optionnal support (SpiderMonkey)

ZOO PROJECT STATUS(1)

ZOO 1.0 released under MIT/X-11 license since April 2010:

```
ZOO Kernel ( C )
ZOO Services ( C and Python )
ZOO API ( Javascript )
```

svn checkout http://svn.zoo-project.org/svn/trunk zoo

ZOO 1.O documentation and packaging in progress

Install guide and ZOO Workshop available on the wiki ZOO 1.0 available on OSGeo-Live 4.0

ZOO PROJECT STATUS(2)

ZOO Services

- Ogr2Ogr (C)
- GEOS/OGR (C)
- GdalTranslate (C)
- GdalGrid (C)

http://zoo-project.org/trac/browser/trunk/zoo-services/

ZOO API

Based on SpiderMonkey and ZOO's optional JavaScript support Uses server-side JavaScript and a Proj4js adaptation Add Logic in WPS chaining Call any services available in the services

www.zoo-project.org

ZOO PROJECT EXPERIMENTS(1)

WFS-T support implementation

(Fenoy, G.)

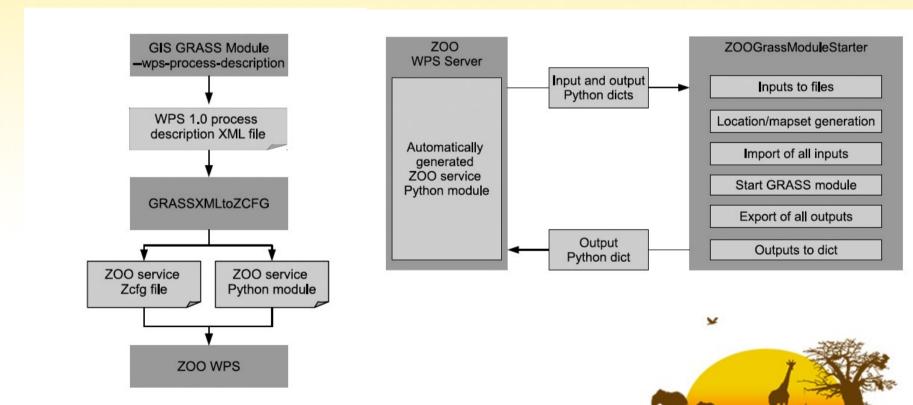
MapServer 5.6.5 ZOO 1.0 WFS-T proxy

Provides a Transactional support to MapServer WFS

Edits the input data source geometry and attributes

Allows any data source input (WFS, PostGIS, SHP, GML...)

ZOO PROJECT EXPERIMENTS(2)


GRASS GIS implementation

(Thanks to Gebbert, S.)

www.zoo-project.org

GRASS GIS 7
ZOO 1.0
ZOOGrassModuleStarter.py

ZOO PROJECT EXPERIMENTS(3)

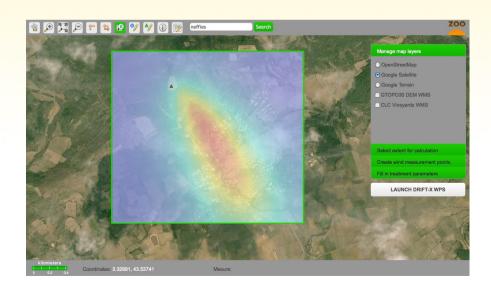
OSM import (ZOOSM) (Thanks to Delluchi, L.)

PythonOSMApi OGR python ZOO 1.0 ZOOSM.py

Provides a new way to import data into OSM using WPS

Could be used for massive imports and updates in OSM

Could be extended to Export from OSM in OGR supported formats



ZOO PROJECT EXPERIMENTS(4)

Drift-X WPS (Bozon, N. and Fenoy, G.)

ZOO 1.0 driftx.f GdalTranslate Services.py Provides a webmapping application for Pesticide atmopsheric dispersion calculation.

WPS for scientific computing

ZOO Project next steps

ZOO Kernel will support 2 new languages for Service Providers:

- Perl
- C# (.NET)

Switch from the .zcfg files to YAML.

Integrate some of the presented experiments into the main SVN tree.

Try to incubate as an OSGeo Project.

THANKS FOR YOUR TIME

gerald.fenoy@geolabs.fr

zoo-discuss@gisws.media.osaka-cu.ac.jp

