

European Environment Agency

ALTERRA WAGENINGEN UR CON TERRA

ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale

umweltbundesamt⁰

Generalitat de Catalunya Departament de Medi An i Habitatge

BeETLe project: ETL geo-spatial tool

Juan Arévalo, César Martinez, Walter Simonazzi

Barcelona, September 9th, 2010

Contenidos

- 1. Project context
 - a. Introduction to ETC-LUSI
 - b. Work environment
 - c. Processing needs
- 2. Use case: Current methodology for LEAC project. Problems
- 3. Solution: BeETLe project
- 4. Project goals
 - a. Unify technologies
 - b. Ability to process big data
 - c. Standardization and document data work-flows
 - d. Parallel execution
- 5. Roadmap
- 6. (Possible) future work directions

ETC-LUSI

• European Topic Centre on Land Use and Spatial Information (Universidad Autónoma de Barcelona):

http://etc-lusi.eionet.europa.eu/

- European Consortium to support the European Environmental Agency (EEA)
- Main work field: Monitoring of land use and land use changes, and their environmental consequences
- Other thematics related with spatial information: coasts, ecosystem accounting...

ETC-LUSI

- Manages a lot of information at European scale
 - \rightarrow Data has big size
 - \rightarrow Data Types: vector, raster and non-geo
- Data is updated periodically
 - \rightarrow Repetitive work-flows
- Several projects at European scale: FP-7, Espon,
- Other projects at national and regional scale

Use case: LEAC project Current methodology

o Several tools and programming languages

• Mainly interactive processes

Use case: LEAC project Current methodology problems

- Several tools:
 - \rightarrow Experienced users
 - \rightarrow License costs
- Format conversions \rightarrow Processing time
- Interactive processes \rightarrow User time
- Work-flows hard to to standardise
 - \rightarrow human error
- Work-flows hard to document
- Limitations or errors in software: "in the next version or next service pack"

Solution: BeETLe project

- ETL geo-espatial tool
- Based on (Geo-)Kettle and Sextante (+Grass?)

Solution: BeETLe project

- Other solutions were analysed: Talend
- Decision was taken based on:
 - Maturity of the project
 - Community
 - Leader organization supporting the project (Pentaho, Spatialytics, University of Laval).
 - Future plans

ETL (Extract, Transform, Load)

• Tools to define work-flows to automate tasks:

- The model documents the work-flow in a formal way
- Parallel process execution

Geokettle - ETL for Geospatial Data

Kettle (Pentaho Data Integration):

- ETL open source tool (LGPL)
- Part of the BI suite designed by Pentaho

GeoKettle

ETL for Geospatial Data:

- Kettle extension with spatial support
- Limited support to vector operations (there is no raster support)
- > Developed by the GeoSOA research group at University of Laval, Canada.

Kettle

- Easy and intuitive interface
- Parallel and distributed execution
- High number of data sources and transformations

What does BeETLe bring to GeoKettle?

	Geokettle	BeETLe
License Type	LGPL	LGPL
Number of GIS formats supported	4	6
Programming Language and libraries	Java	Java
	JTS GeoTools	JTS GeoTools, Sextante
Raster Support	NO	SI
Support vector	SI	SI
Vector Analysis Operations	> 25	> 100
Raster analysis operations	No	> 100
Parallel and distributed processing	Xes	Yes
Visor Cartográfico integrado Integrated Mapping Viewer	No	No

- Unified technology:
 - Easy to use
 - Software licenses
 - Less format conversions higher throughput

- Standardization and documentation of work-flows:
 - Reduce human error
 - Processes can be reproduced and audited
 - Non-interactive processes: processing and user time

- Parallel execution
 - Using the ETL technology
 - GIS specific issues

- Ability to process big data
 - Free software: can be improved and adapted
 - Benefits from parallel processing (ETL tools)

BeETLe: features

- Supports raster, vector and table data
- All the Sextante algorithms available in a single ETL tool
- Plus all the features provided by Kettle

Kettle Transformations and Jobs

- Jobs:
 - Sequential execution
 - Component-level parallelism
- Transformations:
 - Concurrent execution
 - Data parallelism and parallel segmentation

Technical challenges

- Sextante vs Kettle architectures: Data pull vs Data push
- Sextante is not designed for parallel computing: API and implementation must be adapted

Technical challenges (II)

- Big data processing: limitations on base libraries (GeoTools, Sextante)
- Data and task distribution; result consolidation

Project Roadmap

- 1st milestone: Sextante as Kettle Jobs
 - no changes are required in Sextante
 - limited parallel execution
 - full range of Sextante algorithms available in Kettle
 - vector and raster support

Project Roadmap (II)

- 2nd milestone: Sextante as Kettle Transformations
 - bigger effort (requires changes in Sextante)
 - more powerful parallel execution
 - a sub-set of algorithms available as Transformations

Algorithm categories

- If the algorithm can be applied independently to different subsets of the data to get a valid result: Directly parallelizable algorithms. Examples:
 - raster sum, product, division, etc: can be calculated on overlapping tiles
 - vectorial buffer: can be calculated on each geometry

Algorithm categories (II)

- The algorithm can be applied to different subsets of the data, but a global post-process (and/or pre-process) is necessary to get a valid result: Indirectly parallelizable algorithms. Examples:
 - Tabulate area algorithm: the result of tabulating tiles does not match the global result, but these partial result can be easily merged
- Sequential algorithms: when no parallelism is possible

Thinking out loud: OGC Services

- Remote services (WMS, WFS, etc) as data sources
 - Use WFS as vector data input
 - Use WMS or WCS as raster data input
- WPS services as BeETLe transformations
 - Similar to Sextante algorithms, but remotely processed using 3rd party resources

Thinking out loud: WPS designer

- BeETLe as WPS flow modeller:
 - Design a complex data-flow in BeETLe
 - Be able to publish this data-flow as WPS service

Thinking out loud: Grass

- Sextante is developing a Grass module that allows to execute Grass algorithms from Sextante
- So we could use the Sextante connector to make Grass algorithms available in BeETLe

- Official blog: http://beetle-project.blogspot.com/
- OSOR Project (SVN, tickets, development docuementation): http://forge.osor.eu/projects/etclusi/
- ETC-LUSI: http://etc-lusi.eionet.europa.eu/

http://etc-lusi.eionet.europa.eu

Muchas gracias Moltes gràcies Eskerrik Asko Muitas gracias

* * * *

Dziekuje Merci beaucoup Много Благодаря Obrigado Paldies Ευχαριστώ Tack Thank you very much Dank u Köszönöm Dekuj Multumesc Dakujem Danke Takk Hvala

Aitäh Grazzi Kiitos Grazie Dêkuji Спаси́бо شُكُرًا

ETC LUSI

European Topic Centre Land Use and Spatial Information E-08193 BELLATERRA (Barcelona)

P: +34 93 581 35 18 F: +34 93 581 35 45 @: etclusi@uab.cat

ETCLUSI

Spain, EU

Or visit our website at:

http://etc-lusi.eionet.europa.eu