
ari.jolma@tkk.fi

Geospatial layers and features: from virtual base
classes to platforms for planning and modeling

Ari Jolma
Aalto University, Finland

ari.jolma@tkk.fi

Requirements of environmental
planning and management workflows

● Interaction between baseline data and plan data
● Baseline data: large quite static datasets, often simple

data models
● Plan data: complex dynamic features, links between

features, dynamic meta data

● Support creativity and innovation
● Comparison of plans, impact assessments
● Collecting field data and linking to sensor data

sources

ari.jolma@tkk.fi

Requirements of environmental
modeling workflows

● Development of conceptualizations with the help of baseline
data
● From spatial descriptions to process and system descriptions

– Some things are preserved, some new things are created

● Saving the conceptualizations

● Populating the conceptual models with data and parameter
values
● Analyzing the data
● Estimating the parameter values

● Linking to scientific data processing and analytical tools

ari.jolma@tkk.fi

Example

● Consider catchment management (for water
quality, erosion, flooding and other problems)
● Several spatial processes

– Hydrology
– Complex land cover and land use changes

● Numerous management options
– Effects varies
– Location and allocation

● Participatory methods
– using interactive software systems

ari.jolma@tkk.fi

Technological conclusions
from requirements

● Several technologies have desirable characteristics
● GIS

● Spreadsheets (design of computations)

● CAD (drafting)

● Analytical tools (statistics for example)

● Environmental simulation models

● Object-oriented software
● Inherit those characteristics

● Multi-language software
● Dynamic creation (planning) of dynamic features etc: Dynamic languages

● Interactive software
● Planning and design is interactive by nature

ari.jolma@tkk.fi

Materials and methods

● GDAL
● Data access
● Methods (GEOS, GDAL native, ...)
● Foreign function interface (SWIG API)

● Cairo, GTK+, GNOME
● Multiple output target 2D graphics
● GUI toolkit
● Software desktop

● Perl
● High-level programming language

ari.jolma@tkk.fi

GDAL FFI: Case Perl

● GDAL foreign function interface (FFI) has a common
OO API, built on top of the C API

● Some adjustments for Perlishnesses
● Objects in guest language link to C++ objects in

GDAL
● GDAL provides stand-alone geometry and feature objects

besides objects for features and geometries in a data
store

● Most of part_of links recreated in Perl to prevent core
dumps due to auto-destroy of objects

● Can use Perl subs as callbacks

ari.jolma@tkk.fi

OO in Perl

● An object in Perl is a variable that is “blessed” into a package
(namespace)
● Developer may add compilation units into a package as she wishes

● Perl variables may be dynamic and complex or opaque links to
objects in underlying code (C++ for example)
● Thus it is easy for example to a Perl object contain other objects – also

dynamically

● Perl supports multiple inheritance like it supports many other things

● Run-time evaluation of code means for example that we allow
methods to be called ad-hoc by end-user

ari.jolma@tkk.fi

Results

● Generic geospatial layer class (Gtk2::Ex::Geo::Layer)
● Styling information, Dialogs
● API for interaction, basic screen behavior, interacting with

features

● Map canvas widget class (Gtk2::Ex::Geo::Overlay)
● Subclass of Gtk2::ScrolledWindow
● + contains image, event handling, rubberbanding, layers

– Image is a pixmap, which is made from a pixbuf, which is
used as a Cairo surface

● Glue class (Gtk2::Ex::Geo::Overlay)

ari.jolma@tkk.fi

The glue class

● Holds a GUI together
● Layer classes register with it to announce their

capabilities
● Menus, commands, dialog boxes, interface elements,

“variable upgrading”

● Text entry to
● create objects and
● send methods to objects

● Link views of the objects (map canvas, list of layers)
● Manage menus, buttons etc.

ari.jolma@tkk.fi

Layer subclasses

● Geo::Raster::Layer and Geo::Vector::Layer
● Layer classes for wrapped GDAL raster bands and

OGR vector layers (and more)
● Support the traditional desktop GIS paradigm

● Gtk2::Ex::Geo::Graph
● Wraps Perl module Graph (module for creating

abstract data structures called graphs, and for
doing various operations on those)

● Adds required methods, save/open, elementary
design

ari.jolma@tkk.fi

Working with a network

sub shortest_path {
 my($self) = @_;
 my($u, $v);
 for my $x (@{$self->selected_features()}) {

next unless ref $x eq 'HASH';
$u = $x,next unless $u;
$v = $x unless $v;
last;

 }
 $self->select();
 return unless $u and $v;
 my @path =

$self->{graph}->SP_Dijkstra($u, $v);
 $self->selected_features(\@path);
}

ari.jolma@tkk.fi

A base class for complex
features

● Geo::Vector::Feature
● A complex alternative to Geo::OGR::Feature
● Currently a Geo::Vector object may contain

– an OGR layer = OGR features in an OGR data source, or

– a Perl array of these features

● The geometry is an OGR geometry (stand alone)
● Has methods for save as / create from GeoJSON

– Uses Perl JSON::XS module

● Still a stub
● for example linkages between features not yet considered

ari.jolma@tkk.fi

Designing a feature

ari.jolma@tkk.fi

Conclusions

● Can base classes for features and layers lead to better
interoperability between many simple and few complex
(as required by this use case)?
● This work seems to support that idea

● Dynamic languages support design that involves
creating new items to a plan / analysis

● FOSS is useful in developing and testing ideas
● Implementations of tools are easy to integrate
● Vertical interoperability between high level languages is a

problem
● New OO systems can be built as FFI

ari.jolma@tkk.fi

Further work

● Temporal dimension
● Layers that represent processes

● Tools for the planning interaction
● For example drafting tools could be taken from some FOSS drawing

program

● Can the text entry be extended into a spreadsheet
● Currently new non-spatial variables “disappear”

● (GNOME) Spreadsheet widget could be easy to integrate

● Case studies

● Visualization library (a proof-of-concept exists, written in C)
● Cairo graphics

● GDAL

ari.jolma@tkk.fi

Thank you for your attention!
ari.jolma@tkk.fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

