
Pierre Racine
Research Professional
Centre d’étude de la forêt
Département des sciences 
du bois et de la forêt
Université Laval
Quebec, Canada

Introducing PostGIS WKT Raster 
Seamless Raster/Vector Operations 

in a Spatial Database

Boreal Avian
Modelling Project



Introducing PostGIS WKT Raster

• Support for rasters in the PostGIS spatial database
- RASTER is a new native base type like the PostGIS GEOMETRY type
- Implemented very much like and as easy to use as the GEOMETRY 

type
 One row = one raster
 One table = one coverage

- Integrated as much as possible with the GEOMETRY type
 SQL API easy to learn for usual PostGIS users
 Full raster/vector analysis capacity. Seamless when possible.

- First release with future PostGIS 2.0
• Development Team

- Current: Jorge Arevalo, Pierre Racine, Mateusz Loskot, 
               Regina & Leo Obe

- Past:  Sandro Santilli, David Zwarg

• Founding
- Steve Cumming through a Canada Foundation for Innovation grant
- Deimos Space, Cadcorp, Michigan Tech Research Institute, 

Azavea, OSGeo

Chapter 13 on 
WKT Raster



• A web site for researchers in forestry, ecology and 
environment

• Doing buffer analysis over HUGE raster and vector 
datasets (covering the extent of Canada)

elevation, etc…

temperature

forest cover

The Context
The Canadian Spatial Data Foundry

geom obsID

polygon 1

polygon 2

polygon 3

polygon 4

…

meanTemp

20.3

15.5

17.5

10.4

…

elevation

450.2

467.3

564.8

390.2

…

etc…

…

…

…

…

…

cutProp

75.2

26.3

56.8

69.2

…



Strategy C (implementing raster as a native type into 
PostGIS) is a more elegant and generic solution 

answering many more GIS problems

Strategies for Implementing the
Base Buffering Process

We need code for…

• vector storage & 
manipulation

• raster storage & 
manipulation

• analysis processes

Strategy
A

database

outside
database

specific
homemade 
application

B

database

database
(non-native

support)

specific
homemade 
application

C

database

database
(native support)

database



Raster in the Database Requirements
(actually WKT Raster features…)

1. Support for georeferenced, multi-band, 
multi-resolution and tiled raster coverages

• Efficient storage of non-rectangular coverages
• Support for nodata value and numerous pixeltypes

1. SQL operators and functions for raster 
manipulation and analysis

2. SQL operators and functions 
working seamlessly on raster and vector data

• Lossless conversion between raster and vector

1. Easy import/export of rasters from/to the 
filesystem

2. Registration (in the database) of metadata 
for rasters staying outside the database



• Georeferenced
- Each tile/raster is georeferenced
- Support for rotation (or skew)

• Multiband
- Support for band with different 

pixeltypes in the same raster
 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF

- Full supports for nodata values (one per band)
- No real limit on number of band

• Tiled 
- No real distinction between a tile and a raster
- No real limit on size

 1 GB per tile, 32 TB per coverage (table)
 Rasters are compressed (by PostgreSQL)

- Support for non-rectangular tiled coverage

• Multiresolution (or overviews) are stored in different tables
• List of raster columns available in a raster_columns table similar to the 

geometry_columns table

1) Georeferenced, Multiband, 
Multiresolution and Tiled Coverages

ulx, uly

pixelsizex

pixelsizey

skewx

skewy

width

h
eig

h
t

e.g. SRTM Coverage for Canada 



2) SQL Operators and Functions for 
Raster Manipulation and Analysis

implemented, being implemented, planned

• All indexing operators: <<, &<, <<|, &<|, &&, &>, >>, |&>, |>>, ~=, @, ~

• Get and set raster properties: width(), height(), upperleft(), 
setupperleft(), pixelsize(), setpixelsize(), skew(), setskew(), numbands(), 
hasband()

• Get and set raster band properties: bandpixeltype(), 
bandnodatavalue(), setbandnodatavalue(), bandhasnodatavalue(), 
setbandhasnodatavalue(), bandpath(), bandisnodata(), setbandpath()

• Get and set pixel values: value(), setvalue(), values(), setvalues(), 
reclass(), getstats(), etc…

• Creation: makeemptyraster(), addband(), addrastercolumn(), etc…

• Transformation: resample(), etc…

• Conversion: toimage(), tojpeg(), totiff(), tokml(), etc…



Simple Examples

• SQL
SELECT rid, rast, ST_UpperLeftX(rast), ST_UpperLeftY(rast) 
FROM mytable

• PL/pgSQL
CREATE OR REPLACE FUNCTION ST_DeleteBand(rast raster, band int)
RETURNS raster AS $$
DECLARE

numband int := ST_NumBands(rast);
newrast raster := ST_MakeEmptyRaster(rast);

BEGIN
FOR b IN 1..numband LOOP

IF b != band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);

END IF;
END LOOP;
RETURN newrast;

END;
$$ LANGUAGE 'plpgsql';



3) SQL Operators and Functions Working 
Seamlessly on Raster and Vector

The time is past when we wanted to 
work on raster data differently than on vector data!

We just want to work on COVERAGES! 
(in whatever format they are: vector, raster, TIN, point cloud, etc…)

• Seamless raster versions of existing geometry functions: srid(), 
setsrid(), convexhull(), envelope(), isempty(), union(), area(), is valid(), 
centroid(), transform(), rotate(), scale(), translate(), etc…

• Easy raster to vector conversion functions: dumpaspolygons(), 
polygon(), pixelaspolygon(), pixelaspolygons(), etc…

• Easy vector to raster conversion functions: asraster(), toraster(), 
interpolate(), etc…

• Major vector-like analysis functions working with rasters: 
intersection(), intersects(), within(), contains(), overlaps(), etc…

• Major raster-like analysis functions working with vectors: 
mapalgebra(), clip(), etc…



landcover

• Categorical rasters layers convert 
well to vector layers
- one variable converts to one column
- groups together pixels of same value
- contiguous or not
- continuous raster layers do not convert as well

• Vector layers do not convert well to raster layers
- each attribute (e.g. type) must be 

converted to one raster
- no support for nominal values (e.g. “M34”)
- global values (area) lose their meaning
- overlaps are lost
- resolution must be high to match vector 

precision
- features lose their unique identities
- reconversion to the original vector is very difficult or impossible

3 b) Lossless Conversion Between 
Vector and Raster Coverages

ra
s

te
ri

s
a

ti
o

n
ve

c
to

ri
s

a
ti

o
n

landcover
geometry type
polygon 4
polygon 3
polygon 7

… …

landcover
geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56

… … … …

landcover

mapsheet

area

We need a better way to convert vector layers to rasters without destroying objects’ identities



• In a vector layer, each object has its own identity

• In a raster layer converted from a vector layer, each object should also 
conserve its own identity

- Each “raster object” has its own georeference
- Black pixels are “nodata values”
- Like vectors, raster objects may or may not overlap

- Raster algorithms can be used on the whole layer after a “blend” of the objects into a single raster

landcover
geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54
polygon 5 M33 23.43
polygon 2 M32 12.34

… … … …

landcover
raster type mapsheet area
raster 4 M34 13.34
raster 3 M33 15.43
raster 7 M33 10.56
raster 9 M34 24.54
raster 5 M33 23.43
raster 2 M32 12.34

… … … …

Rasters become just another way to store 
geographic features in a more expressive 

vector object-oriented-like style

3 b) Lossless Conversion Between 
Vector and Raster Layers



• The goal is to be able to do overlay operation on coverages the same 
way we are used to do them on vector coverage but without worrying if 
data are stored in vector format or raster format.

- ST_Intersects takes nodata value into account.  
- Great simplification of applications concepts and graphical user interfaces
- See the tutorial on the WKT Raster wiki…

ST_Intersection 
(implemented)

cover
geom ctyp

e
polygon 4
polygon 3
polygon 5
polygon 2

… …

observation
geom obsid
point 24
point 31
point 45

… …

result
geom obsid ctype

polygon 24 4
polygon 53 3
polygon 24 5
polygon 23 2

… … …

SELECT ST_Intersection(ST_Buffer(observ.geom, 1000), cover.geom) as geom, 
obsid, ctype
FROM observation, cover
WHERE ST_Intersects(ST_Buffer(observation.geom, 1000), cover.geom)

∩ =
area
10.34
11.23
14.23
9.45
…

SELECT obsid,    geom,    ctype,     ST_Area(    geom    ) as area FROM (

) foo

observ
geom obsid

polygon 24
polygon 31
polygon 45

… …

cover
raster ctyp

e
raster 4
raster 3
raster 5
raster 2

… …

(gv).geom, (gv).val, (gv).geom

gv,rast

rast



ST_MapAlgebra 
(being implemented)

• Generate a new raster, pixel by pixel, as a the result of an expression 
involving one, two or more rasters 
- One input and two input rasters versions
- Resulting extent can the same as be the first

raster, the second raster, the intersection or 
the union of both

- Misaligned and different resolution rasters are 
automatically resampled to first or second raster

- Absent values (or nodata values) are replaced with NULL 
 or a provided value (so we can refer to them in expressions)

- Resulting pixeltype can be specified
- Will allow referring to surrounding or neighbor tile pixels 

values for focal & zonal functions. i.e. 'rast2[-1, -1]‘
- Expressions are evaluated by the PostgreSQL SQL 

engine so that users can use their own Pl/pgSQL functions
- Will also allow passing geometries and values in place of raster 

for a seamless integration with vector data

[a]    =        [b]     +      [c]

[-1,1]

[-1,0]

[-1,-1]

[0,1]

[0,0]

[0,-1]

[1,1]

[1,0]

[1,-1]



ST_MapAlgebra
(being implemented)

• Example 1: Reclassifying pixel values (one raster version)
- SELECT ST_MapAlgebra(rast, 'CASE WHEN rast < 0 THEN 0 

                                                                 ELSE rast 
                                                      END') 
FROM elevation

• Example 2: Computing the mean + some personnal adjustment (two 
rasters version)

- SELECT ST_MapAlgebra(elev1.rast, elev2.rast, 'rast1 + rast2) / 2 + 
MyAdjustment(rast1, rast2)', '32BF', 'INTERSECTION') 
FROM elev1, elev2 WHERE ST_Intersects(elev1.rast, elev2.rast)

• You can also intersect or merge 
rasters, create raster aggregates, 
and many funny things!

-4

-1

-2

2

-4

0

0

2

1

-4

-1

-2

2

-4

0

0

2

1

-10

-2

-5

0

-12

-2

0

2

1

0

0

0

2

0

0

0

2

1

0

-4.5

-6

0



4) Easy Import/Export of 
Raster From/To the Filesystem

PostgreSQL
PostGIS

coverage table

import

(or load)

export

(or dump)

• Import is done with gdal2wktraster.py
- Very similar to PostGIS shp2pgsql
- Batch import, production of overviews and creation of tiling and index

- Can import many file formats  (thanks to GDAL)
- Example:

 gdal2wktraster.py –r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326 -k 50x50 -I >     
 c:\temp\mytif.sql

 psql -f c:\temp\mytif.sql testdb 

• Export is done using the GDAL WKT Raster driver



5) Registration of Metadata for Rasters 
Staying Outside the Database

-

Prov ide  fa ste r lo adi ng a nd  ex po rt o f fil es f or d es kto p a pp lica tion

-

Prov ide  fa ste r ac ce ss f or web  ap pli cat ions  (J PEGs)

-

Avoi d u sel es s d ata bas e b ack up  of  large 
d ata se ts not req uiri ng e di tio n

-

Avoi d impo rta tio n (c opy ) o f la rge  
d ata se ts into  the  da tab as e

-

All fu nc tio ns sho uld  ev en tua lly works
s eamle ss ly with  ou t-db  ras ter

-

Data  re ad /writ e with GDAL ( ma ny format s)

-

Even tu al pos sib ility  to co nv ert o ut- db 
raste r to  in -db  ra ste r an d h enc e, t o
l oad  ra ste rs i n th e DB u sin g SQL



CR EA TE  TA BLE  ou tras te r A S
SE LE CT  ST _M ake Reg is ter edR ast er(' c:/te m p/m yti ff/*. tif' )  



CR EA TE  TA BLE  in rast er AS  
SE LE CT  ST _M ake Ban dI nD B(ra st, ban d)  FR OM  ou tras ter

BD

Web Client

landcover
raster
raster
raster
raster
raster

…

Web server
Web service

SQL

Image01.jpg

JPEGs

Image02.jpg

Image03.jpg

Image04.jpg

…

HTTP



A Complete Framework for Light 
GIS Application Development

•

GIS in the Database: A complete SQL geospatial API working as seamlessly as possible on any type of coverage 

-

Vector, raster, TIN, point cloud, etc…

-

Keep the processes close to the data where the 
data should be: in a database

-

DBMS client-server architecture good for 
desktop and web applications, single and multi-users 

•

Why SQL?

-

Most used, most easy and most minimalist  though 
complete language to work with data in general

-

Easily extensible (PL/pgSQL)

•

More lightweight applications

-

All the (geo)processing can be done in the database

-

Desktop and web applications become 
simple SQL query builders and data displayer

Desktop or Web 
Applicaton

(query building
 & display)

Spatial Database
(geoprocessing)

SQL
table,

vector,
raster



Introducing 
WKT Raster "Raster Objects"

•

Rasters created by converting geometries coverage become raster becomes vector like "raster objects".

•

Like vector geometries, raster objects:

-

are independent from each others

-

have their own localisation (or georeference)

-

can overlap

-

can change location independently

-

can represent individual objects with their own identity

•

Moreover, raster objects can be used to model real life objects better represented as small fields (like fires or  fuzzy objects).

•

Very new type of GIS object



Raster Objects VS Other GIS Objects

• Point and Line Coverages
• Polygon Coverages

- Objects represent a constant surface with an identity and 
properties (like an object in a OO context)

• Raster Object Coverages
- Constant Raster Objects (categorical)

 Objects represent a constant surface with an identity and properties (like a feature or an 
object)

 Better modelled as polygon, but modelled as raster because they are better processed 
using existing raster algorithms (eg. landcover, basin)

 E.g.: land use; land cover; traditional raster objects that should overlap but can’t because 
they are in raster format (ex. buffers, animal territories)

- Variable Raster Objects (field)
 Objects represent a variable field that have an identity and properties
 Generally modelised as a unique raster and difficult to 

model as polygons
 E.g.: fire, fuzzy objects (lakes, land cover, forest 

stands, soil),  area of influence, animal territories

• Traditional Raster Coverages
- Represent a variable field with 

different values (no unique identity or other properties)
- E.g.: elevation, climate, etc…



Comparison with Oracle GeoRaster

See Jorge Arevalo’s presentation, just following…



Summary
• Lightweight applications (web or desktop) like the Canadian Spatial Data 

Foundry needs server API to manipulate and analyse vector and raster 
data. When possible, seamlessly. Ideally in SQL. 

• PostGIS WKT Raster aims to provide such an integration
- Support for multiband, multiresolution, tiled and non-rectangular raster 

coverages

- Seamless operators & functions on raster & vector types
 Lossless conversion between raster & vector layers
 ST_Intersection and ST_MapAlgebra and many others working seamlessly on raster and vector

- Storage of metadata for raster stored outside the DB

- Easy import/export similar to PostGIS shp2pgsql

• A new approach to geospatial application development
- All GIS processes on raster and vector can now be done in the database

• Introduction of a new kind of GIS raster objects useful for:
- modelling categorical features needing raster algorithms

- or fuzzy objects requiring their own identities



Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

Boreal Avian
Modelling Project


	Introducing PostGIS WKT Raster Seamless Raster/Vector Operations  in a Spatial Database
	Introducing PostGIS WKT Raster
	The Context The Canadian Spatial Data Foundry
	Strategies for Implementing the Base Buffering Process
	Raster in the Database Requirements (actually WKT Raster features…)
	1) Georeferenced, Multiband,  Multiresolution and Tiled Coverages
	2) SQL Operators and Functions for Raster Manipulation and Analysis
	Simple Examples
	3) SQL Operators and Functions Working Seamlessly on Raster and Vector
	3 b) Lossless Conversion Between Vector and Raster Coverages
	3 b) Lossless Conversion Between Vector and Raster Layers
	ST_Intersection  (implemented)
	ST_MapAlgebra  (being implemented)
	ST_MapAlgebra (being implemented)
	4) Easy Import/Export of  Raster From/To the Filesystem
	5) Registration of Metadata for Rasters Staying Outside the Database
	A Complete Framework for Light  GIS Application Development
	Introducing  WKT Raster "Raster Objects"
	Raster Objects VS Other GIS Objects
	Comparison with Oracle GeoRaster
	Summary
	Thanks!

