

Building a New Generation of Sensor Web Implementations for Hydrology

Simon Jirka (52° North)

Christoph Stasch (Westfälische Wilhelms-Universität Münster)

Overview

- Background
- Sensor Web Enablement
- Aims of the project
- Generalisation of sensor data
- Validation of sensor data/alerting
- Open Source SWE client implementations
- Summary and outlook

Background

- Sensor Networks of BAW
 - Federal hydrometric network (about 1.600 monitoring stations)
 - Groundwater monitoring networks along the Federal Waterways (> 10000 sites)
 - Monitoring networks to secure waterway structures (>1.000 sites)
- Lacking standards in data acquisition, data distribution and data archiving
- Demand of data integration is very high

Background

- Project funded by the DLZ-IT BMVBS (BAW Ilmenau)
- Close cooperation with the Wupperverband
- Started in October 2009
- Duration ~ 1 year
- Aiming at improving and advancing several aspects of Sensor Web

Sensor Web Enablement

- Standardization of data formats as well as (web) service interfaces
- Integration of sensors and sensor data into spatial data infrastructures
- Hide the heterogeneity of sensor interfaces and low level sensor network protocols
- Foundation for realizing "plug-and-play" web based sensor networks

Sensor Web Enablement

- OGC Working Group
- Standards for
 - Encoding sensor measurements
 - Accessing real time measurement data as well as time series data
 - Controlling sensors and simulation models
 - (Discovering sensors and sensor data)
 - Describing metadata of sensors and sensor observations

Sensor Web Enablement

Aims of the Project

- Improve the performance of Sensor Web applications
 - Generalisation of sensor data
- Validate sensor data for alerting purposes
 - Support of complex alerting criteria
 - Editing of alerting rules
- Include these enhancements into new Sensor Web client applications

Generalisation of Sensor Data

- Often high temporal resolution of sensor data (e.g. one measurement per minute)
- Usual visualisation of time series data: diagrams
- Display of data for large time spans (e.g. 10 years)
 → (much) more data available than necessary for visualisation
- For time series display: the width of the diagram in pixels is equivalent to the number of needed measurements

Generalisation of Sensor Data

- Generalisation techniques allow
 - Reducing the amount of transmitted data
 - Improving the selection of measurements when creating time series visualisations
- Implementation relies on the Douglas-Peucker-Algorithm
- Originally intended for map generalisation (reducing the number of points in curves)

Generalisation of Sensor Data

- Implemented as plug-in for the 52° North SOS
- Generalised data are provided via a new procedure (virtual sensor)
- Will be included in the next SOS release

Validation of Sensor Data/Alerting

- Sensor measurements can be erroneous (e.g. due to defective sensor hardware)
- Critical for alerting applications
- Solution: Define reliable alerting criteria (e.g. comparison with neighbouring stations)
- Using event stream processing technology for filtering incoming measurement values

Validation of Sensor Data/Alerting

- Sensor Event Service (SES) → new OGC approach for alerting
- 52° North SES implementation supports event stream processing
- Event Patter Markup Language (EML) for expressing alerting rules

Validation of Sensor Data/Alerting

- Rules to be supported
 - Above/under threshold
 - Value change over a time period
 - Value change over a number of measurements
 - No data
 - Combination of rules

Open Source SWE Clients

- Conceptual improvements have been integrated into new client developments
- SOS client

 time series and map display
- SES client → definition of validation/alert criteria
- First versions available by the end of September

Sensor Observation Service Client

- Based on the Google Web Toolkit
- Diagram and map display
- Generalised sensor data used for overview diagrams
- Data export functionality
- Time series navigation (zoom, pan, first value, last value)

Sensor Event Service Client

- Definition of validation and alerting criteria → graphical approach → users do not need to deal with XML encodings
- Automatic translation of alerting rules into EML fragments
- Allows publication of alerting rules
- Subscription management

Summary and Outlook

- First versions will be available at the end of September
- Improved performance and functionality
- Can be customised to new application domains and contexts
- Open Source software allows the flexible extension and improvement

Thank you for your attention!

More information:

http://52north.org/swe

jirka@52north.org