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Abstract
Atmospheric  pollution  due  to  agricultural  pesticide  for  viticulture  is  a  major  concern  today,  

regarding both public health, sustainable agriculture and ecosystems quality monitoring. Atmospheric  

dispersion modeling and the use of geographic information systems allow us to spatially quantify the  

atmospheric pollution on a given area and to proceed to risk analysis. The simulation of air pollution  

can also be very helpful to determine optimum wether conditions for spraying over a specific terrain.  

This paper aims to present a multi-disciplinary research based on the use of an atmospheric dispersion  

model  within a Web Processing Service  (WPS) architecture,  able  to predict  and map atmospheric  

pollution dispersion online. Past research and the coupling of the Drift-X model and Open Source GIS  

are first explained. The linking of Drift-X with ZOO Kernel 1.0 as a  Fortran based Web Service is then  

detailed, with an emphasis on the used multi-language procedure and WPS chaining. The developed  

platform is then presented with details on the link to MapSerer and the adopted rendering techniques.  

The WPS Web GIS client is finally illustrated and and some of the user interactions detailed.      

1.  Introduction 
Modern agricultural  practices  are  based on the  massive  use  of  phytopharmaceutical  products  to 

control crops quality and quantity. This is particularly true about viticulture, which is one of the most 

pesticide consuming culture after cereals. Advances in vineyards protection and new chemical solutions  

have  contributed  to  increasing  yields  and  to  ensuring  regular  quality  production  to  agricultural 

exploitations. Chemical control products have proved to be extremely efficient and allow the pesticide 

penetration within canopies, but their systematic use impacts soils, water and air. In this paper, we will 

focus on atmospheric dispersion and the induced deposition of pesticide on the ground.

Atmospheric dispersion of pesticide is a complex process but can be basically explained as follows 

(Bozon et al, 2009). Phytopharmaceutical  products are usually spread over the plots using a sprayer, 

which is an agricultural machine allowing to spray pesticide over large areas. It is most of the time 

towed or suspended from a tractor, as shown in figure 1. 
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Figure 1. Example of pesticide sprayer used in vineyards

Sprayed pesticides then spread in several directions while the sprayer runs through the  vineyards. 

Some of it reaches the vine leaves and grapes, some reaches the ground and run-o on soils and the rest 

leaves the plot to be transported by the wind. This forms a pesticide cloud, as shown by figure 2, that is 

prone to dispersion and depositing in the environment (Bozon et al, 2009).

Figure 2. Observed pesticide cloud after early morning treatment

Many agro-meteorological studies are focusing on the spray drift process at different scales, and on 

its impacts on the environment. Near-field studies tend to become very accurate using Computational 

Fluid Dynamics (CFD) principles, and allow scientists to characterize pesticide emissions to the air 

during and after the treatments. This is a major asset to model the long-range transport of pesticide, as 

the results of validated micro-scaled models can be used as input data in the different atmospheric 

dispersion models available. In our former research, a long-range transport model was developed  with 

taking some aspects of the GIS data model into account and by using open source tools (Bozon et al, 

2007).



2.  Coupling atmospheric dispersion modeling and open source GIS

2.1 Atmospheric dispersion modeling

Atmospheric dispersion modeling (ADM) is an essential tool in air quality management because it 

provides a relationship between source terms locations (i.e where discharges to  the air  occur)  and 

observed adverse effects on the environment and the neighborhood.

Atmospheric dispersion models refers to the mathematical simulation of air pollutants dispersion in 

the  ambient  atmosphere.  They are intimately  related to  numerical  simulations  as  most  models  are 

performed  with  computer  programs  that  solve  the  mathematical  equations  and  algorithms  which 

simulate  the  pollutant  dispersion.  As atmospheric  dispersion  is  complex and because  air  pollution 

cannot be measured in every place it occurs, models are used to simplify and simulate the dispersion of 

air pollutants from emission sources, and to to predict the downwind concentrations or depositions on a 

given area.

Despite the fact that many models prove to be efficient on small domains (i.e a few square meters), 

only a few are adapted and validated for larger areas (i.e a few square kilometers) and simulations of 

atmospheric spray drift are seldom performed at the watershed scale.  The decision of building a GIS-

based dispersion  model  was thus  taken,  focussing on cartographic  projections,  scales  changes  and 

DEM layers in the original model 's code (Bozon et al, 2009).

2.2 The Drift-X model 

Accurate wind data-sets are difficult to acquire over large areas and long time-series but required by 

most CFD models. Some of the eolian processes included in pesticide atmospheric dispersion are also 

to complex to be solved by numerical simulations at that stage, due to their uncertainty and variability. 

Furthermore, CFD tools appear to be quite long to use for simulations, as both input data and domain 

geometry have to be pre-processed through the use of several softwares. Their use necessitate quite 

expensive hardware and software and most of all involves very long calculation costs.

Given that wind data are quite poor for our concern and that a large set of assumptions has to be 

done to model the whole dispersion process at different spatial and temporal scales, the use of CFD 

tools  to  solve  our  problem  was  ill-advised.  In  relation  to  the  necessary  accuracy  and  because 

calculation costs have to stay low in order to perform fast simulations, an original alternative to the use 

of CFD is therefore proposed (Bozon et al, 2008).

Drift-X model is a probabilistic simplified Gaussian atmospheric dispersion model able to forecast 

pesticide spray drift  after the treatment,  from the plot to the watershed scales. The model operates 

within a domain of a several square kilometers, corresponding to a typical southern French small wine-

growing area. Drift-X is based on a reduced-order modeling approach to flow field reconstruction with 

a small number of measurements, as well as to Gaussian plume transport over realistic topographies 



and unsteady wind flows (Bozon et al, 2009). 

The main goal  of Drift-X is  to provide the mean trajectory of a pesticide cloud after spraying 

applications, by forecasting the wind field and the pesticide concentrations for a permanent state. The 

wind flow is calculated according to the parameters and the DEM layer provided by the user. A user-

defined quantity of pesticide is then transported and deposited according to the wind flow. Here is an 

example Drift-X simulation based on the following parameters and displayed as common vector and 

raster formats in figure 3 and 4.

– The domain for calculation is 8km2.

– The cartographic projection is extended Lambert 2 (EPSG:27572)

– The number of points for the output grid is 900.

– The used input DEM layer is SRTM 90m resolution.

– The source plot is 1 ha with 33 rows to treat.

– The sprayer treats 3 rows at the same time at the average speed of 1 m/s.

– The spraying nozzle output velocity is 7 m/s with an output ow of 0.001 kg/s.

– Two wind points are used to calculate the flow field (N 60 - 5 m/s wind , N 30 -4 m/s wind.)

Figure 3. Resulting pesticide cloud rendered as ESRI shapefile (.shp)

Figure 3. Resulting pesticide cloud rendered as GeoTIFF (.tiff)



2.3 Integration of Drift-X model in Quantum GIS

The reduced order modeling approach used for the modeling made the programing aspects easier. 

The equations composing the model have been transcribed in Fortran language, including a local spray 

drift model, the wind flow calculation aand a travel-time based transport model as routines. The choice 

of  Fortran  was  made  because  it  is  one  of  the  languages  that  is  best  suited  to  compute  complex 

mathematical expressions ((Bozon et al, 2009).

The fastness of the Fortran compiler and the mesh free approach allows us to compute the solution 

in only a few seconds depending on the size of the domain and on the elevation data resolution. Indeed, 

the DEM values are extracted for the domain and then sent to Drift-X, which computes the solution 

using the x, y, z triplets as base topography. The results are then written to output files which contain 

point-based information for the whole domain. 

The program has not been transformed into a independent GIS class yet as the integrated approach 

would suggest, but is used as a standalone and fast executable program. Both input and output datasets 

are communicating with Quantum GIS. Despite the fact that a more integrated GIS oriented ADM class 

will greatly enhance the coupling, there is a major advantage in the resulting coupling which is that the 

Fortran program stay independent of the GIS software, which will make any modification in the model 

easier as we will only need to re-compile the Fortran program.

Using Quantum GIS which is based on a robust C++ API that presents plenty of spatial algorithms 

and native GIS functions, we could easily integrate the Fortran executable (Bozon et al, 2008). QGIS 

has been designed according to an extensible plugin architecture. This allows new features and user-

oriented  functions  to  be  easily  added  to  the  application  and  that's  why  QGIS  offers  advanced 

programming possibilities.  Plugins can be created using C++  or the related Python bindings,  which 

allow a simpler programming environment for developing specic plugins that directly interact with the 

C++ source code. The Drift-X plugin was thus developed using the QGIS Python bindings, (Bozon et al, 

2008). and its interface is presented in figure 5.

Figure 5. Drift-X plugin interface within the QGIS interface. 



3.  Adapting Drift-X to WPS by using ZOO 1.0

3.1 Research context and goals

Once the Drift-X model was integrated into QGIS, we could use it directly into a geo-referenced 

framework  and  run  many  simulations  simply,  according  to  various  wind  parameters  and  DEM 

resolution layers. Other analysis tools provided by QGIS could also been used directly to work on the  

resulting pesticide  clouds layers,  and to  intersect  them with other relevant  geodata  to  tend to  risk 

assessment (i.e intersecting the simulated pesticide cloud with population density layers  for example). 

Although it gave satisfying results, the scientists and the drift-X users soon needed a more generic 

and user-friendly platform, as it was intended to be used also by non GIS experts. Indeed, the use of the 

QGIS plugin requires the basic knowledge of the software, and the plugin is also subject to instability if  

some major changes occur in the QGIS API. The decision to adapt Drift-X to the Web was thus taken, 

as it appeared to be the simplest way to provide a stable, cross-platform and easy-to-use simulation 

platform.

As the development work done into QGIS was based on the chaining of various processing tasks,  

the idea of using WPS to reproduce the procedure on the server-side was taken rather early (Fenoy et 

al, 2009). This was also the best way to proceed to such processing in a OGC standardized way. The 

use of ZOO1.0 for adapting Drift-X to WPS is presented in the next section, and the whole WPS 

chaining is then detailed.

3.2 Linking Drift-X with ZOO Kernel 1.0

ZOO Kernel is the heart of ZOO 1.0. It is a server-side C Kernel which makes it possible to create, 

manage and chain WPS 1.0.0 compliant Web Services, by loading dynamic libraries and handling them 

on-demand. Thus, it can easily connect to geospatial libraries and scientific models, but also with the 

common cartographic engines and spatial databases. 

ZOO Kernel is written in C language, but Web Services can be programmed in C, Python, Java,  

Fortran,  PHP and JavaScript.  This multi-language support is  convenient for developers and allows 

above all to use existing code to create new Web Services. Open source GIS libraries or specific code 

can so be ported server-side with very little modifications (Fenoy et al, 2009). 

Using ZOO was thus very convenient for our concern, as it supports Fortran code, but also includes 

server-side adaptation of the GDAL and OGR libraries by default, so it was helpful for us as we also 

needed some GDAL commands in the chaining. ZOO 1.0 was thus installed on a Linux server with the 

Fortran support activated. This implied to install the Fortran compiler (G77) on the machine, before 

starting to create the needed Web Services. MapServer 5.6 was also installed on the server, as it is used 

as the default cartographic renderer in the intended Web GIS. Its use is explained in the next section.



3.3 ZOO Services developed for Drift-X

Once the server configuration was done, we could start by defining our chaining and develop the 

different targeted Web Services step-by-step. For each new Service, a ZOO configuration file (.zcfg) 

was added in the ZOO installation. The different steps are detailed bellow.

The first needed operation is to get the input parameters defined by the users, in order to generate 

the Drift-X configuration file needed for the server-side computation. A simple OpenLayers map and a 

set  of input forms were set  up, allowing the user to draw a calculation extent, create wind points,  

selecting a vineyards plot and fill other vineyards specific parameters. Once those values available, 

they are sent to a simple WPS service written in Python, that writes an ASCII file containing the well  

formated input data needed by Drift-X.  An extract of the Python code is presented bellow:

def driftX_writeParams(xmin,max,ymin,ymax,windx,windy,windspeed...)

f=open('driftx.data', 'w')

f.write(xmin+xmax+ymin+ymax)

f.write(windx+windy)

f.write(windspeed)

…

f.close()

The second step is then to add a DEM layer in the interface and to clip it according to the user-

selected extent. An extract ot the SRTM 90m DEM is thus displayed in the platform using a WMS 

configured  MapServer  installation.  Then,  the  extent  written  by  the  first  Service  is  passed  to  the 

available  ZOO  GDAL Service,  so  the  SRTM  can  be  dynamically  clipped  server-side  using  the 

following simple GDAL Translate command. 

gdal_translate -ot Float32 -projwin xmin ymax xmax ymin

 input_dem .tif output_dem .tif

These two first step thus provide the Drift-X configuration file and the input DEM layer, so that  

everything is ready to launch the Drift-X Fortran code. The  next step is then to create a ZOO Service 

using the Drift-X Fortran source code. This is done using the ZOO Fortran support, which converts 

Fortran code into dynamic C library. Only a few modifications in the original code were needed to 

make it work, mainly to adapt it to the ZOO Kernel data structure. After several test, we concluded that 

the outputs were exactly the same as the local Drift-X, and that the calculation costs were not that much  

affected, depending on the client bandwidth of course (Fenoy et al, 2009). 

After a few seconds, the ZOO Drift-X Service thus generates an output .CSV file containing the 

x,y,z triplets from the DEM layer and the corresponding deposited pesticide concentrations calculated 



by Drift-X. The ZOO GDAL Service is called once again to be able to convert this file into an new 

GeoTIFF, using the following GDAL Grid command. 

gdal_grid -of GTiff -ot Float64 -l driftx driftx.vrt output.tif

Some other GDAL options or commands can be used for advanced rendering of the raster pesticide 

cloud, such as different kind of spatial interpolations. In our case, the Inverse Distance Weighted (IDW) 

interpolation command was called like this:

gdal_grid -a invdist : power =1.0: smoothing =50.0 

-txe xmin xmax -tye ymin ymax

-of GTiff -ot Float64 -l driftx driftx.vrt output.tif

The last step is to create  a ZOO Service able to get the resulting tiff and to write the corresponding 

mapfile, so that MapServer can dynamically display the resulting raster file as WMS, each time that a  

simulation is achieved. This was done using Python and a simplified extract is given bellow:

def driftX_writeMapFile(xmin,max,ymin,ymax,...)

f=open('driftx.map', 'w')

f.write(“MAP”)

f.write(“NAME” +””+ “Driftx map”)

f.write(“SIZE” +””+ size)

f.write(“EXTENT” +””+ xmin + ymin + xmax +ymax)

…

f.close()

Five  inter-dependent  WPS  compliant  Services  were  thus  developed  using  different  languages, 

namely Python for input configuration file writing, C for clipping and converting the input DEM layer, 

Fortran to execute Drift-X model, C again for converting and processing the Drift-X results, and finally 

Python for writing MapServer mapfiles on the fly.

Every Service are executed by ZOO Kernel thanks to their .zcfg files that provide the five Services 

metadata, in other words some information on their respective Provider, Input and Output. In order to  

add logic in the chaining and to be able to automate it, the ZOO API was also used at the end of the  

development  steps.  Indeed,  ZOO 1.0  comes  with  ZOO API  which  is  a  Mozilla-based  server-side 

Javascript API that can simplify the chaining and make it more generic. The chaining is thus driven by 

a simple JavaScript file that orders and chains  ZOO.Process  and  ZOO.Request  functions  to call the 

five Services that were developed.



4.  Building an OGC compliant simulation Web GIS 

The  last  step  of  our  research  is  to  make  the  working  WPS  chaining  communicate  with  a 

webmapping client application. This is  the simulation platform front-end that is also developed by 

using the available open source tools.

An OpenLayers map is  first set up to a suitable extent for Drift-X, and the input SRTM DEM Layer 

displayed as WMS by MapServer. For the user needs, a Corine Land Cover vineyards layer was also 

added as WMS, thus allowing to identify the suitable areas on which running simulations.

Then, OpenLayers is linked to a Jquery toolbar widget in order to provide advanced navigation to 

the user. The default OpenLayers navigation controls appear in the toolbar, and some Drift-X specific 

ones are also developed on top of the OpenLayers API. For example, an extent selection box control is 

created from the native OpenLayers Zoom Selection Box control, and allows the user to define the 

extent on which to simulate. Some other specific controls are developed for wind points and starting 

point creation, by using and adapting the OpenLayers vector editing functions.

A set of Jquery forms which are linked to some of the specific controls are then placed in the  

interface. Longitude and latitude values of extent, wind points and stating point are automatically filled 

by the controls. Wind directions and speeds values are driven by user-friendly sliders.  Some other 

parameters can be provided manually by the user. A button is then added to the forms in order to send 

the user-defined values to the first ZOO Service and to launch the chaining defined in the previous 

section.  

Finally,  as  soon  as  the  chaining  is  finished  (i.e  when  every  ZOO  service  returned  a  “Service 

Succeeded” statement, the resulting interpolated raster pesticide cloud is served by MapServer as a 

WMS layer and added to the OpenLayers map. A screenshot of the Drift-X WPS user interface is  

shown bellow:

Figure 5. Drift-X WPS interface with an example WMS pesticide cloud. 



5.  Conclusion 
A GIS based atmospheric dispersion model was presented and its integration in Quantum GIS was 

first explained. The same procedure development procedure was  proposed and adapted in order to use 

Drift-X model within a WPS architecture based on ZOO 1.0.

A multi-languages WPS chaining was set up to run the different processes composing the model and 

according to the user-defined simulation parameters. The use of the original Drift-X code was possible 

thanks to the ZOO Fortran support, and this proves that other scientific models can be easily integrated 

as ZOO Services. Furthermore, the whole chaining is driven by JavaSrript thanks to the ZOO API.

Finally, a Web GIS client application was developed by using open source tools and let the user 

define the parameters, launch the simulation and visualize the resulting pesticide cloud layer.  Both 

server-side and client-side are thus OGC compliant thanks to the use of WPS for processing and WMS 

for publishing the input/output.

References 

Bozon N., 2009, Coupling Atmospheric dispersion modeling and GIS: application to pesticide spray drift, PhD 

thesis, University of Montpellier 2.

Bozon, N., Mohammadi, B. and Sinfort, C, 2007. 'Similitude and non symmetric geometry for dispersion      

modelling'. Proceeding of STIC and Environment 2007. 5th edition. e-sta Vol.5, number 2,.

Bozon, N. and Mohammadi B., 2008. "Geo-Grenelle Award". Institut Géographique National. Geo-Evenement 

20th edition.

Bozon, N. and Mohammadi, B., 2009 , 'GIS based atmopsheric dispersion modelling Forecasting the pesticide 

atmospheric spray drift from a vineyard plot to a watershed'. Applied Geomatics, Springer, Vol.2.

Bozon, N., Mohammadi, B. and Sinfort, C., 2010. 'A GIS-based atmospheric dispersion model '. 

Proceeding of STIC and Environment 2009. JESA – Hermès.

Fenoy G., Bozon N. and Raghavan V., 'ZOO Project: The Open WPS Platform'. Free and Open Source Software 

for Geospatial, FOSS4G 2010 – Barcelona, Spain, http://2010.foss4g.org/presentations_show.php?id=3621

Fenoy G., Bozon N. and Raghavan V., 'ZOO Project: The Open WPS Platform'.  OSGIS 2010 Conference –  

Nottingham, United Kindom,  http://cgs.nottingham.ac.uk/~osgis10/os_call2010.html

Fenoy G., Bozon N. and Raghavan V., 'ZOO Project: The Open WPS Platform'. WPS and Scientific computing 

for climate change Workshop – Trento, Italy,  http://mpba.fbk.eu/sites/mpba.fbk.eu/files/02_ZOO-Project-

WPSDay_2010.pdf 

Fenoy G., Bozon N. and Raghavan V., 'ZOO Project: The Open WPS Platform'. Free and Open Source Software 

for Geospatial, FOSS4G 2009 –   http://2009.foss4g.org/presentations/#presentation_93

Bozon N. and Mohammadi B., "GIS-based atmospheric dispersion modelling ". Free and Open Source 

Software for Geospatial, FOSS4G 2008 - 

http://conference.osgeo.org/index.php/foss4g/2008/paper/view/312/104

http://conference.osgeo.org/index.php/foss4g/2008/paper/view/312/104
http://2009.foss4g.org/presentations/#presentation_93
http://mpba.fbk.eu/sites/mpba.fbk.eu/files/02_ZOO-Project-WPSDay_2010.pdf
http://mpba.fbk.eu/sites/mpba.fbk.eu/files/02_ZOO-Project-WPSDay_2010.pdf
http://cgs.nottingham.ac.uk/~osgis10/os_call2010.html
http://2010.foss4g.org/presentations_show.php?id=3621

	1.  Introduction 
	2.  Coupling atmospheric dispersion modeling and open source GIS
	2.1 Atmospheric dispersion modeling
	2.2 The Drift-X model 
	2.3 Integration of Drift-X model in Quantum GIS

	3.  Adapting Drift-X to WPS by using ZOO 1.0
	3.1 Research context and goals
	3.2 Linking Drift-X with ZOO Kernel 1.0
	3.3 ZOO Services developed for Drift-X

	4.  Building an OGC compliant simulation Web GIS 
	5.  Conclusion 

