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Abstract 

Graphs composed of node and link are the most common way of representing street networks for 

any analysis beyond pure visual representation. The intuitive primal approach to convert a physical 

street network into an abstract mathematical graph is mapping street intersections as nodes while 

mapping street segments between intersections as links connecting nodes in the graph. 

Correspondingly, a dual approach is indirectly mapping street segments to nodes and intersections 

to links. Although the dual approach seems less intuitive, the dual representation of a street network 

it creates doesn't suffer from the same inherent low variance problem in the node's ‘degree’ as the 

primal representation does and therefore the dual representation usually exhibits the favorable 

scale-free and small-world properties of a network. Such characteristics of the dual representation 

makes it a better candidate for certain analyses where topological distance rather than metric 

distance plays a more important role. 

The process of cartographic generalization is usually necessary before the creation of the dual 

representation because of street topology. Although there have been many cartographic 

generalization algorithms, few are tailored to satisfy the need of urban street network analyses 

based on the dual representation. This paper presents a generalization algorithm focusing 

specifically on urban street networks that utilizes the accompanying drawing of urban blocks and 

the concept of convex space, medial axis, and line-of-sight. The algorithm can then be implemented 

either as a modified v.generalize module with the addition of this new method or a new dedicated 

spatial network analysis module in GRASS. 

 

1. Introduction 

According to the State of World Population report, more than half of the world‘s population is 

now living in urban areas and the proportion increases continuously in an unprecedented pace, 

especially in the developing world (Obaid 2007, p 1). This means the importance of towns and 

cities, which have always been the center stage of humanity, will only escalate. Regardless its size, 

one dominant feature of an urban settlement is the extensive street network that provides access to 

those buildings and other land uses in the settlement. Therefore the representation and further 

analyses of different aspects of the urban street network has served a key role in understanding the 

urban settlement in depth. Over the years people have developed many methods to represent the 

urban street network for various purposes. These methods fall into two general categories, either a 

visual or an abstract representation of the urban street network. 
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1.1 Visual representations of urban street network 

Because the urban street network functions mainly as the circulation system to various land uses 

in an urban settlement, the most common form of its representation is a map called street map that 

shows roads and streets in a district or entire city. A typical street map is usually drawn in a way 

that makes the street network the most visible entity on the map with the location, shape, and width 

of streets clearly defined. Whether it is in the forms of hand-drawn sketches, printed paper maps, or 

electronic images displayed on the screen, street maps have proven to be a great tool for navigating 

cities, towns, and communities. Being a visual representation of the street network, however, the 

usefulness of the street map depends entirely on the users‘ vision to discern and their knowledge 

and intellect to interpret. 

In addition to provide linkage and access to buildings and other land uses in the city, the urban 

street network also provides much-needed open spaces to the otherwise crowded city packed with 

buildings. The width of urban streets not only determines the traffic they can carry but also the 

breathing room between buildings across the street. In other words the urban street network itself is 

the most important urban open space of the city. To most people it is the passage of the network of 

streets and squares, i.e. the urban voids, lets them experience the city life. Therefore urban 

morphologists who study urban forms have developed an approach to represent and analyze the 

network of streets and other open spaces via a black-and-white image called figure-ground drawing. 

In contrast to the street map, which regards the street network as a distinct entity with well-defined 

edges, the figure-ground drawing emphasizes open voids such as streets, squares, and parks 

implicitly via treating them as the ―ground‖ of the ―figure‖ consisting of buildings and other solid 

masses (Trancik 1986). In a figure-ground drawing figures representing solid masses are usually 

colored in black or deeply shaded, leaving the ground white or blank. Such a drawing reveals the 

urban fabric created by a predominant ―field‖ of solids and voids and enables people to study the 

relative coverage of the urban settlement (ibid). 

 

1.2 Abstract representations of urban street network 

Given the limitation of visual representation, to further analyze the street network beyond pure 

visual interpretation and solve the problems such as ―The Seven Bridges of Königsberg,‖ a notable 

historical problem in mathematics, people have to find other ways to represent the urban street 

network that is specifically related to the issue under investigation. For example, in the paper 

written by the pioneering Swiss mathematicians and physicist Leonhard Euler and published in 

1736 discussing finding a route through the city of Königsberg in a way that would cross all seven 

bridges in turn and no repetition, he discovered that the critical feature of such a route is the 

sequence of bridges crossed (‗Leonhard Euler‘ 2010; ‗Seven Bridges of Königsberg‘ 2010). 

Therefore he could reformulate the problem in an extremely simplified format that dealt with only 

seven bridges connecting four landmasses. Because the choice of route inside each landmass and 

the exact shape, length, or location of each bridge were both found to be irrelevant, one can use an 

abstract node to represent the landmass and use an abstract link to represent the bridge without 



altering the nature of the problem. In the terminology of graph theory, whose development has been 

attributed to that Euler‘s paper, the node where links connect is called ―vertex,‖ the link between 

nodes is called ―edge,‖ and the resulting mathematical structure is called a graph (ibid).  

With such an origination from urban street network, it is not surprising that graphs composed of 

node and link are the most common way of representing street networks for any analysis beyond 

pure visual representation. Still, depending on the purpose of analysis, there may be more than one 

way of using graph to represent a street network. Given that the street network mainly serves as the 

circulation system of an urban settlement, the majority of analyses on urban street network would 

likely be related to efficient movement from origin to destination within the settlement that involves 

route choice not unlike ―The Seven Bridges of Königsberg‖ problem. Therefore an intuitive and 

more popular approach to convert a physical street network into an abstract mathematical graph is 

mapping street intersections as nodes while mapping street segments between intersections as links 

connecting nodes in the graph. Because this approach directly maps geographic entities into graph 

entities with the same dimension, i.e. zero-dimensional intersections to nodes and one-dimensional 

streets to links, it is called the primal approach (Porta et al 2006). Nowadays the primal approach is 

the way street networks are encoded and stored in Geographic Information Systems (or GIS) and 

other spatial databases. 

As mentioned earlier, the street network with connected squares also functions as the 

indispensible open-space system of an urban settlement. When the subject of analysis focuses on 

the open spaces that street segments implicitly created, each street segment may become either an 

origin or a destination while how to choose the route to traverse those open spaces in a particular 

manner become the main concern. Correspondingly, a dual approach is indirectly mapping street 

segments to nodes and intersections to links. Although the dual approach seems less intuitive, the 

dual representation of a street network it creates doesn't suffer from the same inherent low variance 

problem in the node's ―degree‖ as the primal representation does and therefore the dual 

representation usually exhibits the favorable scale-free and small-world properties of a network 

(ibid). Such characteristics of the dual representation makes it a better candidate for certain analyses 

where topological distance rather than metric distance plays a more important role. Space syntax, a 

well-known methodology for architecture and urban analyses, is one of the examples that rely on 

the dual approach. 

The process of cartographic generalization is usually necessary before the creation of the abstract 

representation, especially for the dual approach because of street topology. Although there have 

been many cartographic generalization algorithms, few are tailored to satisfy the need of urban 

street network analyses based on the dual representation. Therefore the intent of this study is to 

develop a dual approach oriented generalization algorithm for abstract street network representation 

that can eventually be implemented either as a modified v.generalize module with the addition of 

this new method or a new dedicated spatial network analysis module in GRASS. The following 

subsections develop a generalization algorithm focusing specifically on urban street networks that 

utilizes the accompanying drawing of urban blocks and the concept of convex space, medial axis, 

and line-of-sight. Section 2 first describes various approaches to generate the aforementioned 



representations of urban street network. Section 3 presents an improved generalization algorithm 

that transforms medial axes into axial lines. Given the algorithm explained in Section 3, Section 4 

works through a few experiments to verify the effectiveness of the new algorithm. Section 5 

concludes and points to further work in the future. 

 

2. Generation of urban street network representations 

Generation of visual representations of urban street network usually required a large-scale 

comprehensive land survey map that may include land use, land subdivision, block delineation, 

street layout, building footprints, and/or building construction to serve as the base map. Historical 

detailed UK Ordnance Survey Maps and the topography layer of the modern UK Ordnance Survey 

MasterMap are good examples of such base maps. Because the vast amount of high-resolution 

aerial photographs and satellite imageries of the entire earth has become readily available through 

online mapping websites or other services in recent years, it is now possible to use only those digital 

imageries to extract essential information for urban street network representation. Regardless the 

source of base maps, however, visual representations of urban street network are normally products 

of a process called cartographic generalization, which may involve methods such as selection, 

simplification, combination, smoothing, and enhancement (‗Cartographic Generalization‘ 2010). 

For example, a thematic street map may be derived from block delineation or street layout in a base 

map, while a figure-ground drawing may be derived from building footprints from the same base 

map. For these two particular representations, unless the base map is already in the form of a GIS 

database with separated layers for block delineation and building footprints, completely automated 

generalization and production may not be possible and most likely require certain degree of human 

intervention. Automated generalization of street map and figure-ground drawing from other types of 

base maps is complex and often requires the full treatment of a comprehensive conceptual model of 

map generalization such as the one proposed by McMaster & Shea (1992). Given its complexity, 

the automated generalization of visual representations of urban street networks is beyond the scope 

of this paper and will not be covered. For the purpose of this paper, it is assumed that suitable street 

maps and figure-ground drawings are already generated properly and available for immediate use. 

Therefore the remaining part of the section will discuss generating abstract representations of urban 

street network only. 

 

2.1 Medial Axis 

The planning, design, and construction of roads in modern days starts with the delineation of 

horizontal road alignment, which consists of only straight tangent lines and curves (Strom et al 

2009). Horizontal road alignment also closely associates with the center-line surface marking on the 

finished road. Thus the most straightforward method of generating an abstract primal representation 

of urban street network is to retrieve the road centerlines. Since it has been the standard practice in 

GIS to encode transportation networks via their centerlines using the primal approach, one can 

easily extract the road centerlines from an appropriate layer if she obtains the digital map from a 

mapping agency. For instance, the UK Ordnance Survey offers a separate Integrated Transportation 



Network Layer product within its OS MasterMap geo-database product line that covers the Great 

Britain. Even if there is no readily available road centerline information to convert to the abstract 

primal representation of urban street network, one can still generate the road centerlines from 

scratch using the street map to serve as the boundary of the shape and following certain algorithms 

to find the equivalent of centerlines of the street network called medial axes in the map. 

Blum (1967) coined the term ―medial axis‖ to refer to the symmetric axis or the topological 

skeleton of an arbitrary shape. Because by definition a point on the medial axis means it must have 

more than one closest point on the boundary, the mathematical definition of the medial axis of a 

plane shape is the locus of the centers of circles that are completely contained within and tangent to 

the boundary of the shape in at least two points (‗Medial Axis‘ 2010). Originally developed to 

transform a two-dimensional shape, especially that of an organism, into a one-dimensional structure 

(ibid), the medial axis has found broad applications in pattern recognition, shape analysis (Chin et al 

1999), and even other fields as diverse as optimal routing of sensor network in geography and 

molecular design in chemistry (Leymarie & Kimia 2006). 

In his original paper, Blum (1967) used different visual analogies, such as grass fires or wave 

fronts propagating inward or contour lines moving upward from the boundary to vividly convey the 

concept of medial-axis computation. Since then many algorithms for medial-axis computation have 

been proposed. Foskey et al (2003) classified those algorithms into four general categories: thinning 

algorithms, distance field based algorithms, algebraic methods, and surface-sampling approaches. 

The latter two follow the formal mathematical definition and rely on the equidistance property of 

medial axis, and therefore more suitable to be executed in the vector-based implementation. On the 

other hand, the former two follow Blum‘s visual analogies and produce the medial axis through a 

process that shrink the boundary in a constant pace, and therefore are more suitable to be executed 

in the raster-based implementation. Both thinning function and distance field based function to 

calculate a cost surface have been available at the outset of raster-based GIS and are commonly 

found in a modern full-fledged GIS, such as the proprietary ArcGIS or the open-sourced GRASS 

GIS. Consequently, using a capable GIS may be the most convenient way to generate medial axes 

on an ad hoc basis. All cases of medial axes shown in this paper are generated through a raster 

command called r.cost in GRASS, which performs the same function as the aforementioned 

distance field based algorithms. 

One well-known ―feature‖ of the medial axis is its sensitivity to the object‘s shape, meaning that 

even a minor perturbation in the boundary may cause spurious deviation on the path of the medial 

axis (Foskey et al 2003; Jiang & Liu 2010; Tam & Heidrich 2003). Although this means the medial 

axis can accurately reflect the shape of an object, this also means the medial axis is unstable and 

thus undesirable as a tool for shape analysis in that it may carry plenty of noises. Many methods 

have been proposed to ―regularize‖ the medial axis by pruning away insignificant bumps, branches, 

or other artifacts on the medial axis but still preserving its topology (Tam & Heidrich 2003). 

Other issues arise if we directly convert the medial axis into a graph using the primal approach 

without any generalization and analyze the resulting graph using the centrality indices defined by 

Freeman (1977, 1979) and others. First of all, if the construction of the primal graph follows the 



road-centerline-between-nodes rule (Porta et al 2006, pp 711-712) that adds intermediate nodes to 

indicate linear discontinuity of curve or angled road segments, the graph will be fragmented 

because the topological distance, i.e. the number of links, between nodes may increase drastically. 

Even if we disregard the significant characteristics of street geometry by removing those 

intermediate nodes that have only two links connect to each, the degree, which is the number of 

links incident upon a node (‗Centrality‘ 2010), of almost all nodes will still fall between 3 and 6 

given the number of streets per intersection in a real urban settlement (Porta et al 2006, p 718). As a 

result, the primal graph of urban street network would normally be neither a small-world network 

nor a scale-free network, both of which requires high ―degree‖ values (‗Small-world Network‘ 2010; 

‗Scale-free Network‘ 2010). 

 

2.2 Axial Line 

When we convert the medial axis into a dual graph with only original intermediate nodes 

removed, the degree does increases but not much, typically from the value of n to 2*n-2. Therefore 

the characteristics of the resulting graph change little. It is only when appropriate generalization is 

applied to the medial axis and the generalized medial axis is then converted into a dual graph that 

could radically alter the characteristics of the graph so it may become a small-world network (Jiang 

& Claramunt 2004). Many generalization models for urban street network base on the principle of 

continuity have been proposed (Porta et al 2006, pp 713-714). Given the well-known cognitive 

property of human wayfinding to go straight at intersections (Dalton, 2001; Dalton 2003; Dalton et 

al, 2003), the linearity of the street spaces is the more intuitively acceptable principle of continuity 

to merge single street segments into longer `strokes' (Thomson 2004). The axial lines defined by 

Hillier and Hanson (1984) and used extensively by the space syntax community are essentially an 

embodiment of such ―strokes.‖ 

Space syntax is a set of theories and techniques for the analysis of spatial configurations of all 

kinds, but it is most popular among architectural and urban researchers as it is in buildings and 

cities where spatial configuration seems to be a significant aspect of human affairs (Space Syntax 

Laboratory 2008; ‗Space Syntax‘ 2010). The syntax approach to the analysis of the seemingly 

continuous and free-flowing urban open spaces ―was first to take the predominantly linear nature of 

urban space seriously, and propose a representation of the street network based on the longest and 

fewest lines that could be drawn through the system‖ (Hillier & Vaughan 2007). These lines, which 

are termed axial lines, are then treated as the nodes of a graph while the junctions are turned into 

links. Various calculations measuring different characteristics of the graph have been proposed; 

several measures can find their equivalents in centrality measures of the network theory.  For 

example, the space syntax measures of control, integration, and choice are analogous to the degree 

(Freeman 1979; Nieminen 1974), closeness (Sabidussi 1966), and betweenness (Freeman 1977), 

respectively (Hillier & Iida 2005; Porta et al 2006). In short, the adoption of the linear continuity 

principle and the dual graph approach enables the axial lines in the space syntax analysis to capture 

key features of the geometry of the street network through the mathematical graph (Hillier & 

Vaughan 2007). 



The problem with axial lines is that the definition of them and the procedure to generate them 

have not been formulated well enough to prevent any ambiguity (Batty & Rana 2004). According to 

Hillier and Hanson (1984, p 92), an axial map is ―the least set of such straight lines which passes 

through each convex space and makes all axial links.‖ And the procedure to generate an axial map 

is: ―first finding the longest straight line that can be drawn ..., then the second longest, and so on 

until all convex spaces are crossed and all axial lines that can be linked to other axial lines without 

repetition are so linked‖ (ibid, p 99). With such vague guidance, it is not surprising that individual 

users‘ intuition and graphic dexterity would determine the outcome, which in turn makes people 

suspect that each example cannot be replicated by a different user in a different time at a different 

place (Batty & Rana 2004). Because much is left at the user‘s discretion, Desyllas and Duxbury 

(2001, p 27.6) argue that ―the ... axial map cannot provide researchers with reliable and comparable 

results.‖ Peponis et al (1998, p 560) thus point out that objectivity in the process of generating axial 

lines can only arise ―from the rigor and repeatability of the procedures used to generate them.‖ 

There have been many attempts to clarify the definition of axial lines and add objectivity into the 

procedure of generating axial lines and axial maps so that unique and reproducible or even 

automatic results can be made (Peponis et al 1998; Penn et al 1997; Batty & Rana 2004; Turner et 

al 2005; Jiang & Liu 2010). These attempts fall into two categories. The first category is an 

exhaustive approach pioneered by Penn and colleagues that initially creates a drawing called all-

lines map showing all possible lines by linking ―vertices defining differences in orientation between 

faces as well as all extensions of faces to meet other faces‖ (Batty & Rana 2004). In the subsequent 

steps, certain criteria are applied to remove unqualified axial lines until the least set of the longest 

straight lines has been identified. The second category is a visibility-based approach pioneered by 

Batty and colleagues that by slightly altering the definition of axial lines from lines of unobstructed 

movement to lines of sight. By so doing the viewshed analysis, a common function in raster-based 

GIS, can be applied to find the viewshed, or variously called visual field or isovist, of each 

individual locations. Then in an iterative process imitating the aforementioned original Hillier and 

Hanson procedure, the viewshed with maximum diametric length is selected, the longest axial line 

is derived from, and that viewshed is removed from the remaining search space until the search 

space is empty (ibid). Beyond the inherent issues pertinent to each approach as identified in the 

relevant papers (Batty & Rana 2004; Jiang & Liu 2010; Turner et al 2005), one common problem of 

these approaches is the counter-intuitive axial lines drawn to pass those barely visible openings 

between buildings as a result of pursuing superfluously ―longest‖ lines according to the original 

guidance given by Hillier and Hanson (1984). Those relatively narrow opening are not unlikely to 

be noticed or walked through by most people in real world. Their emergences obviously depend on 

the resolution of the source drawing and therefore outcomes of those approaches are scale-

dependent. In other words, source drawings of different resolutions for the same site would 

probably generate different sets of axial lines, which lead the outcomes of these approaches suffer 

the similar shortcomings to the original hand-drawn guidance — unstable and unreliable. 

 

3. A generalization algorithm that transforms medial axes into axial 



lines 

3.1 Urban open spaces as a system of beady strings 

Since the space syntax is purposed to be a tool for configurational analyses of space, the so-

called space is the basic element of the theory upon which control, integration, choice, and other 

metrics are measured. Consequently the definition of space plays a vital role in the development of 

the theory. In original development of the theory, Hillier and Hanson (1984, p 90) analogized the 

continuous open space of an exemplary settlement to ―a beady ring system, in that everywhere 

space widens to form irregular beads, and narrows to form strings, at the same time joining back to 

itself so that there are always choices of routes from any space to any other space.‖ At the time they 

devised the axial lines to represent the straight segments of unobstructed movement and analogized 

them to the strings of the beady rings, they also identified those fully convex areas and likened 

those convex spaces to the beads of the rings (ibid, p 91). Accordingly they also devised a 

complementary graphical tool to the axial map called convex map to study the ―stringiness‖ as well 

as the ―beadiness,‖ i.e. the one-dimensional and two-dimensional characteristics, of the ―rings.‖ 

Rooted in architecture and urban design, the space syntax theory defines the convex space as the 

area circumscribed by view-blocking objects such as wall or other imaginary boundaries connected 

by edges of those objects such as corners of buildings. The mathematical nature of convex space is 

in which all points can see all others. In real world this means a place where social behaviors such 

as interaction among people are more likely to happen. Hillier and Hanson (1984, p 92) define a 

convex map as: ``the least set of fattest spaces that covers the system,'' and suggest an algorithm for 

manually constructing such a convex map: ―[s]imply find the largest convex space and draw it in, 

then the next largest, and so on until all the space is accounted for‖ (ibid, p 98). With the convex 

map in place, one can now comprehend the axial map as a representation of the most likely 

movement pattern in the study region that identifies the ―longest and fewest‖ set of lines stringing 

various connected convex ―beads‖ together. Collectively those lines form the skeleton of the (open) 

space of a study region (Jiang & Liu, 2010). From this point of view, it can also be thought what 

individual axial lines identified are groups of convex spaces in which people can make unobstructed 

movement easily. 

The problem with convex map is it shares the same symptom of axial map: lacking rigorous 

definition and leaving much at the discretion of users. Both Peponis et al (1997) and Batty and Rana 

(2004) demonstrate that without further constraints there will be no unique solution to the 

partitioning of the study region into a minimum number set of convex subspaces. People who are 

familiar with the concept of spatial data analysis on area data (Haining 2004) may suggest that we 

can collapse all convex spaces into individual nodes at their centroids and connects those nodes 

with links according to permeability of original convex spaces to generate a graph. However, 

without the grouping scheme provided through the identification of axial lines, the convex-map-

transformed graph of urban open space also suffers the same problem facing the primal graph that is 

directly converted from medial axes without any generalization. It might be for this reason the 

convex map provides no substantial advantage over the axial map and therefore is mainly applied to 



the analysis of building (Hillier 1996) where wall-separated rooms can be recognized as convex 

spaces more easily. 

 

3.2 An overview of the algorithm 

Clearly what lacks in the space syntax theory are new rules or ―constraints‖ to reasonably and 

stably partition the continuous urban and/or open space into convex subspaces. Take the beady 

string analogy again. Imagine what we would do if we want to make one from scratch. We would 

most likely start with piercing each bead through its center, or at least as closely as possible, and 

then use a string to thread those perforated beads together in sequence. If intuitively piercing the 

center of a bead is the most physically secure way to thread the bead, it would not be overly 

hypothetical to assert that using the medial axis as the guide to assist partitioning of convex spaces 

could be the most reasonable and stable solution to the problem. The following contents show that 

the solution is not only feasible but also leads to an improved solution of generating axial lines free 

from aforementioned problems and quite capable of being automated. 

To start with, we use the same T-shape-inside-square figure-ground drawing frequently used in 

the space syntax literature to illustrate the basic concept and procedure. We use a series of diagrams 

to demonstrate how medial axes can guide the partitioning of convex spaces and eventually 

generate the desire axial lines and dual graph. Given the drawing shown in Figure 1(a), the first step 

is to generate the medial axis of the open space through an appropriate mean. Figure 1(b) shows the 

desired medial axis on top of the background image, which is a cost surface map generated in 

GRASS GIS. The ridges in the image are selectively traced to create the medial axis with only the 

main trunk but no branches. 

(a) (b) (c) (d)

(e) (f ) (g) (h)  

Figure 1. (a) The figure-ground drawing. (b) The traced medial axis on top of the distance field map 

using shades of color to indicate the distance from boundaries. (c) The initially partitioned convex 

subspaces. (d) The merged convex spaces. (e) The final set of generalized medial axes, that is, axial 

lines on top of associated convex-space sets. (f) Convex-space sets colored to differentiate. (g) The 

axial lines with their midpoints. (h) The final dual graph. 



 

Figure 1(c) shows how the space is partition into convex subspaces so that there is only one 

straight segment of the medial axis inside each partitioned convex subspace. Theoretically there are 

two schemes to divide urban open space into convex subspaces based on medial axis: ―link-and-

joint‖ spaces versus ―all-link‖ spaces (Figure 2). To some extent, these two schemes can be 

analogized to the relationship of primal graph versus dual graph, or that of Voronoi tessellation 

versus Delaunay triangulation. The algorithm follows the all-link scheme to generate the initial set 

of convex subspaces. Obviously this is not ―the least set of fattest spaces that covers the system‖ yet, 

therefore a generalization scheme is needed to merge qualified convex spaces into a larger one. 

(a) (b)  

Figure 2. (a) An instance of the link-and-joint convex space partition. (b) An instance of the all-link 

convex space partition. 

 

Again, the clue is in the medial axis. The generalization follows the aforementioned principle of 

continuity used in the ICN generalization model (Porta et al 2006, p 713-714) and starts at the first 

pair of contiguous convex spaces whose internal medial-axis segments form the largest convex 

angle. That is, start with the convex space pair within which people will experience the least angular 

change when they move along the medial axis from one segment to the other, to consider whether 

or not they are qualified for merge. Although more rigorous verification or mathematical proof is 

still needed, this heuristic prioritization strategy has helped to generate an optimal set of longest, in 

terms of their shape, and fewest convex spaces in an efficient way in the limited cases tested so far. 

If the two contiguous convex spaces can be merged to form a new convex space, then the merger 

proceeds. After the merger, a new line connecting the other two opposite endpoints of the two 

original joined medial-axis segments is created to replace them and becomes the now generalized 

medial axis of the new convex space from the merger. This simple generalization approach 

guarantees that the newly generalized medial-axis segment still connects with other segments so 

further generalization can proceed. The conditional testing goes on to the next pair of contiguous 

convex spaces having the least angular change in their medial-axis segments iteratively until no 

more such pair can be merged to form a new convex space. At this stage, the convex map consists 



of those merged convex spaces seems to have reasonably achieved ―the least set of fattest spaces 

that covers the system‖ condition. Figure 1(d) shows the resulting convex map and generalized 

medial axes. Even though ―the criterion for what is a ‗fat‘ convex space is never defined‖ in the 

definition of convex map (Batty & Rana 2004, p 617), the shapes of the same number of six 

partitioned convex spaces in Figure 1(d) on average seem to be ―rounder‖ than those shown in 

Figure 1(a) of the paper by Batty and Rana (2004). But only applying shape metrics (McGarigal et 

al 2002), such as perimeter-area ratio or linearity index, to compare the overall or average fatness or 

slimness of the convex spaces between these two figures can objectively accept or reject such 

superficial claim. 

The final phase is the process of merging single street segments into longer ―strokes‖ (Thomson 

2004) ―until all convex spaces are crossed and all axial lines that can be linked to other axial lines 

without repetition are so linked‖ (Hillier & Hanson 1984, p 99). In this phase the same principle of 

continuity applies so the process begins with the first pair of contiguous convex spaces whose 

(generalized) medial-axis segments form the largest convex angle. However, since it is no longer 

possible to create a new convex space by merging, in order to substitute for the convexity 

requirement we must set a new condition to test if two convex spaces can be merged to form a new 

non-convex space. Now, what being created by merging two convex spaces together is only a space 

enclosed by an irregularly shaped polygon. Therefore such a space formed by a group of convex 

subspaces is termed convex-space set. Given the selected pair of convex spaces, a line connecting 

the other two opposite endpoints of the two joined medial-axis segments must fall completely inside 

the area covered by the two contiguous convex spaces in order to guarantee that the newly created 

line can be qualified as a generalized medial-axis segment and that line still connects with other 

segments so further generalization can proceed. If this condition is met, then the merger proceeds. 

And the just-created connecting line becomes the generalized medial axis of the new convex-space 

set from the merger. 

With the two originally joined medial-axis segments, this generalized medial axis creates a 

triangle that is also completely contained within the new convex-space set. This requirement 

guarantees unobstructed movement or line of sight, i.e. people can easily see each other, at least 

within this minimal triangular area along the full longitudinal extent of the new convex-space set. 

Alternatively, suppose the midpoint of the (generalized) medial-axis segment roughly coincides 

with the centroid of the convex space or convex-space set. This requirement also means the 

subspaces inside a convex-space set are linked together by their medial-axis midpoints or even 

centroids. It thus avoids the aforementioned peculiarly long axial line problem occurs in other axial 

line generation approaches. The conditional testing goes on to the next pair of contiguous convex 

spaces and/or convex-space sets having the least angular change in their generalized medial-axis 

segments iteratively until no more such pair can be merged to form a qualified new convex-space 

set. At this stage, the definition given by Hillier and Hanson (1984, p 92): ―the least set of such 

straight lines which passes through each convex space and makes all axial links‖ has been met. 

Figure 1(e) shows the generalized medial axis as axial lines and underlying convex-space sets; 



Figure 1(f) through 1(h) show a map of colored convex-space sets, the axial map with midpoints of 

axial lines, and a dual graph of the axial map, respectively. 

So far we have only dealt with the situation where a pair of adjacent convex spaces and/or 

convex-space sets meets, i.e. two (generalized) medial-axis segments meet. What if three or more 

medial-axis segments meet? To handle the situation of more than two medial-axis segments meet, 

we have to specify the rules of merging for the following three possible ways that a medial-axis 

segment can interact with others. With these rules, all merging situations can be appropriately 

managed. 

b

c

(a) (b) (c)  

Figure 3. (a) ―Join with‖ situation: three-way (left circle) and four-way (right circle). (b) ―Touch 

upon‖ situation. (c) ―Cross over‖ situation. 

 

a) Join with (Figure 3(a)): The typical situation happens at a node in a graph where two or 

more links meet. All merging situations start this way, no matter how many links join at one node. 

Since this is the situation we have been dealing with so far, simply follow the existing rule outline 

above. 

b) Touch upon (Figure 3(b)): Once qualified convex spaces are merged into a convex-space set 

(e.g. the blue street), those remaining convex spaces (e.g. the yellow street) sharing common 

borders with the new convex-space set on only one side are in this situation. This happens only after 

the first iteration of convex-space sets is created. The merging process will create a new generalized 

medial axis segment for the merged ―trunk‖ convex-space set. Consequently other ―branching‖ 

convex spaces or convex-space sets touched upon it have to extend or trim their (generalized) 

medial axis segments and adjust their associated borders to once again touch upon the new trunk 

medial axis on only one side. Although the ―trunk‖ cannot further merge with its ―branches,‖ 

merging between those ―branches‖ might be possible. This rule handles the typical road junction 

with three arms forming either a T or Y shape in the real world. 

c) Cross over (Figure 3(c)): This situation also happens after the first iteration of convex-space 

sets is created. There may be two branches (e.g. the green street) touching upon the trunk (e.g. the 

blue street) on the opposite sides that are also qualified to be merged together. The qualification is 

similar but slightly modified. Because the (generalized) medial-axis segments of two crossing 

branches may be parallel but offset a bit so not intersect inside their combined boundaries, the 

qualification for merger now relies on the connection of both midpoints and endpoints of the 

merging medial-axis segments rather than the original rule of forming a triangle that falls 

completely inside the combined boundaries. Figure 4 shows an example of such a situation. Again 



the condition is set to prevent the aforementioned peculiarly long axial line problem occurs in other 

axial line generation approaches. 

 

Figure 4. The blue line connecting the two endpoints of the red (generalized) medial axes is 

completely within the boundaries of the streets, while the green line connecting the two midpoints 

of the red (generalized) medial axes cuts through an almost invisible portion of the corner. This 

figure also shows how a curved street section should be subdivided to create generalized linear 

medial-axis segments. 

 

The revised merging process for the cross-over situation then works as follows. Suppose the 

(shared) borders connecting to vertices where two generalized medial-axis segments touch on them 

were removed. If the two new lines, one connecting the two opposite endpoints and the other 

connecting the midpoints of the two facing (and generalized) medial-axis segments, both fall inside 

the boundaries of the branches and the trunk, then the removal of the medial-axis vertex is 

permanent, otherwise the removal is reversed. When the merging proceeds, the just-created 

endpoint-connecting line becomes the generalized medial axis of the new convex-space set from the 

merger. And a new trunk crossing over the old trunk is formed. Of course, because the new crossing 

generalized medial-axis segment will intersect with the crossed medial-axis segment at different 

location, associated vertices and borders of both trunks have to be adjusted accordingly. This rule 

takes care of the most common 4-way road intersection in the real world. This and previous rules 

can be combined to iteratively deal with the 5-way or even 6-way road interaction in the real world. 

 

4. Verification of the algorithm 

4.1 Experiments with a set of urban environments 

This subsection describes the result of putting the algorithm through the same set of urban 

environments used by Jiang and Liu (2010) in order to verify the effectiveness of the algorithm. 

Please refer to Figure 5 of their paper for comparison. Figure 5 shows the testing result of typical 

street patterns of three, four, and eight blocks (Jacobs 1995). The figure shows that the resulting 

axial lines still closely resemble the shape of medial axes while significantly reduce the number of 

constituent segments. By not pursuing absolute fewest and longest axial lines, the proposed 

algorithm becomes an effective way to generalize the medial axis. 



(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)  

Figure 5. Row (a), (b), and (c) is the result of the three-, four-, and eight-block tests. Column (1) 

shows figure-ground drawings; column (2) shows traced medial axes on top of the distance field 

map; column (3) shows the final convex-space sets colored to differentiate; column (4) shows the 

final axial lines with their midpoints; column (5) shows the final dual graph. 

 

Figure 6 shows the result of testing the algorithm with a real urban street pattern in Barnsbury, 

London, UK around the Barnard Park. This case demonstrates how curved sections of streets should 

be converted into straight segments. The medial axis of a curved section of a street is obviously, a 

curve. Curves are incompatible with the theoretical foundation of linearity or line-of-sight in the 

algorithm and therefore must be generalized into a series of linear segments. The rule for curved 

street section applies the same principles that have been followed from the outset. First, the 

algorithm intends to create reasonable convex spaces instead of absolutely fewest and longest axial 

lines. Second, the generalized medial-axis segment must fall completely inside the partitioned 

convex subspace. Therefore the rule is simply dividing the curve into the least number of equi-

length sections in which the line connecting the two ends of the curved medial-axis segment must 

fall completely inside the section in order to become the generalized linear medial-axis segment. 

Also note that in this case the rule of crossing over has prevented the further merging of at least one 

pair of crossing convex space and convex-space set because the line connecting midpoints of their 

(generalized) medial-axis segments partly falls outside the boundaries, even though the line 

connecting the two far endpoints of their medial-axis segments does fall inside the boundaries. 

Please refer back to Figure 4 to see an enlarged portion of Figure 6 for illustration. This example 

once again shows that the algorithm does not intend to create the absolutely longest axial line by 

joining apparently discontinued convex-space sets together. 



(a) (b) (c)  

Figure 6. (a) The traced medial axes on top of the distance field map. (b) The final convex-space 

sets colored to differentiate. (c) The final axial lines with their midpoints. 

 

Figure 7 shows some important characteristics of the algorithm. This case demonstrates that the 

algorithm is quite stable in that it can tolerate both the distortion of the original shape (Figure 7(a)) 

and imprecision of tracing the medial axis (Figure 7(b)), and still generates similar results. However, 

during the initial convex-space partitioning phase, the rule of partitioning into fattest convex 

subspaces must be followed. That is, whenever there is more than one way to partition the convex 

subspaces, the rule of thumb is to partition them in a way that will create ―fattest‖ convex subspaces. 

That is, the overall diameters of circles that circumscribe the resulting convex space must be 

smallest. Figure 7(c) illustrates what might happen if the rule is not followed. 

Figure 8 demonstrates that the algorithm can also handle a building plan as complex as the 

National Gallery, London, UK. Finally, the Figure 9 shows the result of applying the algorithm to 

the same French town Gassin used by Hiller and Hanson (1984) and Batty and Rana (2004) for 

comparison. 

 



(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

 

Figure 7. Row (a), (b), and (c) is the testing result of the shape distortion, imprecise tracing, and 

slim partitioning cases, respectively. Column (1) shows traced medial axes on top of the distance 

field map; column (2) shows the initially partitioned convex subspaces with some of the 

circumscribed circles colored in blue; column (3) shows the merged convex spaces; column (4) 

shows the final set of generalized medial axes, that is, axial lines on top of associated convex-space 

sets; column (5) shows the final convex-space sets colored to differentiate. 

 

(a) (b) (c)  

Figure 8. (a) The traced medial axes on top of the distance field map. (b) The final convex-space 

sets colored to differentiate. (c) The final axial lines with their midpoints. 

 



(a) (b)

(c) (d)
 

Figure 9. (a) The distance field map. (b) The final axial lines on top of the final convex-space sets 

colored to differentiate. (c) The final axial lines with their midpoints. (d) The final dual graph. 

 

4.2 Thoughts on implementation 

All previous results of testing the algorithm have been done manually on a computer-aided 

design and drafting (CADD) system. However, the algorithm is intended to be eventually an 

automated solution from the outset. Therefore certain aspects of the implementation have been 

considered thoroughly. Currently the targeted platform is the GRASS GIS for two reasons. First, 

because, as free and open source software, GRASS has almost all foundations required for 

implementing such an automated solution in place, it saves tremendous amount of efforts on 

rebuilding everything from scratch. Second, the author already has the experience on conducting a 

similar but much simpler implementation regarding space syntax calculation using GRASS (Wang 

& Liao 2006, 2007). The lesson learned from that particular implementation is using UNIX shell 

scripts alone for even such a modest computational geometry task not only simply inadequate but 

also too slow to be practical beyond proof-of-concept. Therefore the algorithm should be 

implemented as a dedicated vector command module written in the more powerful C programming 

language, which is also what used to build the GRASS GIS. 

There are a few distinct phases in the algorithm that can be implemented individually. The first 

phase is the generation of medial axis. Although the r.cost raster command already provides the 

function to support generation of medial axis by manual tracing, the automatic generation of medial 

axis should be implemented as a vector command in order to output a vector map for later phases. 

There is abundant computational geometry related literature on algorithms for generating medial 

axis. Many point out the scheme that uses a set of sample points on the shape boundary and then 

approximates the medial axis with the Voronoi diagram of these points (Dey & Zhao 2004, p 195; 

Foskey et al 2003, p 276; Tam & Heidrich 2003, p 483; Chin et al 1999, pp 406-407). Because 

GRASS has already have a vector command called v.voronoi that generates Voronoi diagram, the 



source code from this command can serve as the foundation for the medial axis generating function 

to built upon. Even the second phase of partitioning populous convex subspaces constrained by the 

medial axis might be implemented by taking advantage of the existence of v.delaunay command 

and use its source code to build the desire functionality because the partitioning process is 

somewhat similar to that of generating Delaunay triangulation. The third and forth phases of 

creating convex map and axial map, respectively, can rely on existing GRASS library functions on 

measuring angle, connecting two points to form a line, checking where a line is completely inside a 

polygon, and merging polygons to accomplish the tasks. Finally the entire implementation can 

either work as a modified v.generalize command with the addition of necessary options and 

parameters or a new dedicated spatial network analysis command module in GRASS. 

 

5. Conclusion 

Many methods and options are available in the GRASS v.generalize vector command (GRASS 

Development Team 2009), but because v.generalize is not tailored to urban open space none of 

them take advantage of the usually associated street layout information to make generalization more 

effective or efficient. This paper describes a new algorithm that is specifically adapted for urban 

open spaces as well as spaces inside buildings and thus makes great use of the boundary 

information of these spaces. The boundary information is first used to generate the medial axis and 

then, with the assistance of medial axis, partition the whole space into convex subspaces. Then the 

principle of continuity is used to guide the generalization of the medial axis. By downplaying the 

absolutely longest axial lines but emphasizing the least angular change, the proposed algorithm not 

only effectively creates the axial map consisting of a slim set of generalized medial axes that still 

effectively resembles the original medial axis, but also efficiently creates the complementary map 

of convex-space sets for further analysis. Once the algorithm is implemented as an automatic 

solution in an open source GIS, it would be a great tool for the analysis of spatial configures of all 

kinds. 
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